

Electrospun polyacrylonitrile nanofibers as miniaturized layer materials for ultra-thin layer chromatography

Dr.Pimolpun Niamlang Prof. Pitt Supaphol Prof. Dr. Gertrud Morlock

Nanofibers

Fibers with diameters less than 1000 nanometers.

Applications

- Composite reinforcements
- Capacitors
- Drug delivery systems
- Energy storage
- Filter

Advantages of Ultrafine fibers

- Large surface area to volume ratio
- Large length to diameter ratio
- High porosity with small pore size
- Flexibility for surface functionalization

Electrospinning (electrostatic spinning)

 A process capable of producing ultra-fine fibers with diameters in the range of nanometers to micrometers by using an electrical force applied to polymer solution or polymer melt.

Electrospun Polystyrene Fibers

Polymer solution/melt

Produces fibers with diameter = 40-2000 nm

Advantages

- Past process
- Discrete Simple process
- Require less materials

Electrospinning Apparatus

Components

- A high voltage supplier
- A capillary tube with a needle of small diameter
- A metal collector

Fiber Formation in Electrospinning

Parameters of Electrospinning Process

- The ability of polymer solution to form uniform fibers is depend on many parameters:
 - Solution properties
 - concentration
 - viscosity
 - conductivity
 - surface tension
 - Processing conditions
 - electrical potential
 - collection distance
 - Ambient conditions
 - temperature
 - humidity

Polymer matrix: Polyacrylonitrile (PAN)

acrylonitrile

polyacrylonitrile

Applications

- carbon fiber
- hot gas filtration systems
- outdoor awnings
- fiber reinforced concrete.
- knitted clothing
- like socks and sweaters
- outdoor products like tents

PAN is one of the versatile polymers that is widely used for making *membranes* due to its good solvent resistance property. It has been used as a substrate for *reverse osmosis (RO) and n a n o filt r a tion (NF)*.

Stationary phase for UTLC

Parameter	TLC	HPTLC	UTLC
Plate size (cm)	20×20	10 imes 10	6 × 3.6
Layer thickness (mm)	0.1-0.25	0.1 or 0.2	0.01
Particle size (µm)	10-12	4-6	Monolithic
Particle size range (µm)	5-20	4-8	
Maximum value for Z_f (cm)	7-15	3-7	1-3
Separation time (min)	30-200	3-20	1-5
Average plate height (µm)	35-75	23-25	
Typical application volume (spots) (µl)	1-5	0.1-0.5	0.01-0.1
Initial spot diameter (maximum) (mm)	3-6	1-1.5	0.5-1
Detection limits (reflectance)			
UV-vis (ng)	1-5	0.1-0.5	0.5
Fluorescence (pg)	50-100	5-10	5

Electrospun nanofiber

Immigration distance ~ 20mm

Experimental

Applied	Diameters of individual fibers ± SD (nm)						
voltage	-	1% UV ₂₅₄	5% UV ₂₅₄	10% UV ₂₅₄			
16 kV	224±65	177±48	179±50	181±40			
18 kV	181±58	155±53	161±48	165±45			
20 kV	160±43	149±60	<u>152+38</u>	<u>154±48</u>			

SEM image of PAN nanofiber phase with UV₂₅₄ which was spun under condition; 18kV/10cm and 10% of UV₂₅₄

Electrospinning time and thickness

Part III

Application

Separation of Preservatives

•Stationary phase – E-spun PAN-10%UV254 nanofiber phase

•Mobile phase – water:acetonitrile 13:7 with 0.1M of tetra-n-butylammonium phosphate, 1m

	A) Electrospun PAN			B) HPTLC plate silica gel CN			
	nanofibers with 10% UV ₂₅₄						
	hR _F	%RSD	Ν	hR _F	%RSD	N	
BE	17	1.3	9044	40	0.10	3937	
PE (E216)	24	1.5	6745	46	0.65	4161	
EE (E214)	31	2.1	3822	54	0.86	6568	
ME (E218)	40	1.5	6005	58	0.40	5112	
B (E210)	45	2.2	_3711_	65	0.19	4136	
So (E200)	48	2.5	4984	76	0.40	3783	
pHB	56	3.9	3997	83	0.55	5263	
Beverage	86	1.0	2214	96	1.16	3139	
Sample	47	2.6	6233	76	0.47	3025	

$$R = \frac{2(D_{R2} - D_{R1})}{(w_2 + w_1)}$$

 D_{Rl} , D_{R2} = the retention distance of two adjacent peaks 1 and 2 w_l , w_2 = the widths of two adjacent peaks 1 and 2,

Stationary phase	BE/PE	PE/EE	EE/ME	ME/B	B/So	So/pHB
A) Electrospun PAN nanofibers with 10% ${ m UV}_{ m 254}$	1.04	1.26	0.97	1.34	1.82	1.16
B) HPTLC plate silica gel CN	1.45	1.41	1.33	0.49	0.56	1.43

Comparison of Mobile Phase Velocities

5%

20

Compound confirmation by mass spectrometry

- The electrospun PAN nanofibers are effective as the stationary phase for thin layer chromatography.
- The devices have been shown to decrease time of analysis and
 v o l u m e o f s o l v e n t n e e d e d.
- The visualization of preservatives on the stationary phase was easily done by put UV_{254} indicator directly into polymer solution.
- ESI-MS spectra were successfully recorded from the nanofiber phases after development and a good detect ability was observed. The regular elution head cleaning after each elution could be skipped as the layer material was still intact after e
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 <liuu
 u</

JUSTUS-LIEBIG-

Thank you

Part III

Application

Separation of water soluble food dyes

- Mobile phase MeOH:Toluene:NH₄OH 25% 40:57:3 ; 1ml
- Development time ≈ 8 min

$$hR_F = rac{Z_s}{Z_f} \times 100$$
 ; $N = 16 \left(rac{Z_s}{w}
ight)^2$

 hR_F = Retention factor x 100; Z_s = migration distance of sample; Z_f = migration of front solvent

N =plate number w = width of spot

4.5×1.5×5.5 cm

