

#### 0 - 38



# Experimental design approach for robustness testing of HPTLC methods

#### Vijaykumar PARMAR, Ph D

Bhavin PATEL, Hetvi PATEL, Sanketkumar PATEL, Ketan VARIYA

Ramanbhai Patel College of Pharmacy,

Charotar University of Science and Technology, CHARUSAT,

Gujarat, INDIA.

vijayparmar.ph@charusat.ac.in

www.charusat.ac.in





### **Analytical Method – Life Cycle**







### **Analytical Method Validation**

- Validation is the formal proof that method is suitable for its intended use.
- Validation Characteristics

|                    | Identification | Impur        | Assay |   |
|--------------------|----------------|--------------|-------|---|
|                    |                | quantitative | limit |   |
| Accuracy           | <del>-</del>   | +            | -     | + |
| Precision          | <del>-</del>   | +            | -     | + |
| Specificity        | +              | +            | +     | + |
| Detection Limit    | <del>-</del>   | -            | +     | - |
| Quantitation Limit | <del>-</del>   | +            | -     | - |
| Linearity          | <del>-</del>   | +            | -     | + |
| Range              | <del>-</del>   | +            | -     | + |
| Robustness         | +              | +            | +     | + |

Robustness is one of the key elements in validation of separation methods





#### **Robustness Testing**

- The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provides an indication of its reliability during normal usage.
- A robustness testing is an experimental set-up to evaluate the robustness of a method.
- The robustness test can be viewed as a part of method validation that is performed at the end of method development or at the beginning of the validation procedure.
- Indeed, ICH Q2(R1) guideline advocates that "The evaluation of robustness should be considered during the development phase".





## Traditional Approach for Robustness Testing

- COST / OVAT / OFAT / Shotgun Approach
- Changing One Single (or Separate) variable or factor at a Time

#### Pitfalls.....

- Unsystematic approach
- Sequential scheme
- Requires many experiments
- These approach gets stuck --- when there is presence of interactions—i.e., the influence of one or more variable(s) on others.

Optimizing Drug Delivery Systems Using Systematic "Design of Experiments." Part I: Fundamental Aspects. *Bhupinder Singh, Rajiv Kumar, & Naveen Ahuja, Critical Reviews™ in Th erapeutic Drug Carrier Systems, 22(1):27–105 (2004)* 





#### **Design of Experiment**

- Design of experiments (DOE) is a well-proven characterization approach within product and process development and a key aspect of quality by design.
- DoE is the branch of applied statistics that deals with planning, conducting, analyzing and interpreting controlled tests to evaluate the factors that control the value of a parameter or group of parameters.
- Advantages of DOE:
- ✓ Development of a robust method.
- ✓ Understand, reduce and control sources of variability.
- ✓ Applicable throughout the life cycle of the method.
- ✓ Regulatory flexibility.





## Steps in robustness testing by DoE approach

- (a) identification of the factors to be tested,
- (b) definition of the different levels for the factors,
- (c) selection of the experimental design,
- (d) definition of the experimental protocol (complete experimental set-up),
- (e) definition of the responses to be determined,
- (f) execution of the experiments and determination of the responses of the method,
- (g) calculation of effects,
- (h) statistical and/or graphical analysis of the effects, and
- (i) drawing chemically relevant conclusions from the statistical analysis and, if necessary, taking measures to improve the performance of the method.





### DoE: A New Paradigm in HPTLC

- A large number of reports are available with respect to robustness testing of HPLC method.
- However, very few published reports are available with respect to robustness testing of HPTLC method using Experimental Design approach.





#### **Experimental Design Approach for Robustness testing of...**

- 1. HPTLC Method for Simultaneous Determination of Beclomethasone Dipropionate (BDP) and Formoterol Fumarate Dihydrate (FFD) in Rotacaps
- 2. HPTLC method for estimation of Diosgenin from *Balanites* aegyptiaca Extract using Spraying Reagent.





## Case 1 - HPTLC method for simultaneous estimation of beclomethasone dipropionate (BDP) and formoterol fumarate dihydrate (FFD) from rotacaps



Label Claim: Each capsule contains

Beclomethasone dipropionate.....200 μg

Formoterol fumarate dihydrate...... 6 μg

Parmar, V. K., Patel, H. N., & Patel, B. K. (2014). Journal of chromatographic science, bmt208





## Nominal chromatographic conditions of HPTLC method for simultaneous determination of BDP and FFD

| Stationary Phase     | Precoated Silica gel G60 F254 aluminium Sheets 10×10 cm², layer Thickness 0.2 mm |
|----------------------|----------------------------------------------------------------------------------|
| Mobile Phase         | Hexane: Ethyl acetate: Methanol: Formic acid 2.0:2.5:2.0:0.2 v/v/v/v             |
| Pretreatment         | TLC plates prewashed with methanol and activated in Oven at 110°C for 5mins      |
| SPOTTING PARAMETER   |                                                                                  |
| Band width           | 6 mm                                                                             |
| Distance between two | 12mm                                                                             |
| tracks               |                                                                                  |
| Spraying rate        | 150 nL/sec                                                                       |





## Nominal chromatographic conditions of HPTLC method for simultaneous determination of BDP and FFD

| DEVELOPMENT PARAMETERS  |                       |
|-------------------------|-----------------------|
| Chamber saturation time | 10 min                |
| Migration distance      | 70 mm                 |
| Temperature             | Room temperature      |
| SCANNING PARAMETER      |                       |
| Slit dimension          | 4.00 mm × 0.30 mm     |
| Wavelength of detection | 220 nm                |
| Lamp                    | Deuterium             |
| Measurement mode        | Absorption/Reflection |
| Scanning speed          | 20 mm/sec             |







### RAMANBHAI PATEL Factors and their Levels selected for Robustness Testing of HPTLC method for BDP and FFD (Case – 1)

|   | Factors                                                            | Levels   |             |          |  |  |  |
|---|--------------------------------------------------------------------|----------|-------------|----------|--|--|--|
|   | Factors                                                            | Low (-1) | Nominal (0) | High (1) |  |  |  |
| А | Change in volume of hexane in mobile phase composition (mL)        | 1.8      | 2.0         | 2.2      |  |  |  |
| В | Change in volume of ethyl acetate in mobile phase composition (mL) | 2.25     | 2.50        | 2.75     |  |  |  |
| С | Change in volume of methanol in mobile phase composition (mL)      | 1.8      | 2.0         | 2.2      |  |  |  |
| D | Change in saturation time (min)                                    | 9        | 10          | 11       |  |  |  |
| Е | Change in detection wavelength (nm)                                | 219      | 220         | 221      |  |  |  |
| F | Change in band width (mm)                                          | 4        | 6           | 8        |  |  |  |
| G | Change in solvent run distance (cm)                                | 6.5      | 7.0         | 7.5      |  |  |  |





### Experimental Design

**Plackett Burman Design** 

Full Factorial Design

Fractional Factorial Design

Asymmetric Factorial Design

Central Composite Design

Box- Behnken Design





- The **DOE** ++ software (Reliasoft Corporation, AZ, USA; ver 1.0.7) was used to set up the experimental designs.
- The % Recoveries and Rf values were observed as responses at each experiment designed.
- The experiment was repeated three times.
- The experiments were executed in random order.
- The significance of the factor effects was determined statistically, using error estimates in the calculation of critical effects, and graphically, by means of Pareto charts.





### Eight experiment Plackett-Burman design to examine the seven factors (A-G) selected for robustness testing of HPTLC method

|             |    |    | l  | Facto | rs |    |    | Responses |        |      |        |
|-------------|----|----|----|-------|----|----|----|-----------|--------|------|--------|
| Experiments |    |    |    |       |    |    |    | % Red     | covery | Rf \ | /alues |
|             | Α  | В  | С  | D     | E  | F  | G  | BDP       | FFD    | BDP  | FFD    |
| 1           | -1 | +1 | +1 | +1    | -1 | +1 | -1 | 100.46    | 99.25  | 0.67 | 0.35   |
| 2           | -1 | -1 | +1 | +1    | +1 | -1 | +1 | 99.77     | 99.54  | 0.67 | 0.36   |
| 3           | -1 | -1 | -1 | -1    | -1 | -1 | -1 | 101.65    | 99.73  | 0.64 | 0.34   |
| 4           | +1 | -1 | +1 | -1    | -1 | +1 | +1 | 98.79     | 100.10 | 0.64 | 0.33   |
| 5           | +1 | +1 | -1 | +1    | -1 | -1 | +1 | 100.94    | 99.68  | 0.64 | 0.34   |
| 6           | -1 | +1 | -1 | -1    | +1 | +1 | +1 | 100.74    | 99.91  | 0.68 | 0.33   |
| 7           | +1 | -1 | -1 | +1    | +1 | +1 | -1 | 98.59     | 100.25 | 0.66 | 0.38   |
| 8           | +1 | +1 | +1 | -1    | +1 | -1 | -1 | 100.25    | 99.77  | 0.65 | 0.36   |





### **Statistical Analysis**

| Responses        |        | Critical Effect |        |        |        |         |         |                        |
|------------------|--------|-----------------|--------|--------|--------|---------|---------|------------------------|
|                  | Α      | В               | С      | D      | Ε      | F       | G       | ME <sub>(α=0.05)</sub> |
| % Recovery (BDP) | -1.01  | 0.90            | -0.66  | -0.42  | -0.62  | -1.01   | -0.18   | 1.729                  |
| % Recovery (FFD) | 0.34   | -0.25           | -0.22  | -0.20  | 0.18   | 0.20    | 0.06    | 0.525                  |
| Rf Values (BDP)  | -0.018 | 0.007           | 0.002  | 0.008  | 0.018  | 0.013   | 0.003   | 0.028                  |
| Rf Values (FFD)  | 0.0075 | -0.0075         | 0.0025 | 0.0175 | 0.0175 | -0.0025 | -0.0175 | 0.029                  |





Representative Pareto charts to show the influence of variables studied in the response of BDP and FFD using PB experimental design for HPTLC method.







#### Case 2 - HPTLC method for estimation of Diosgenin from Balanites aegyptiaca Extract using Spraying Reagent.

- Balanites aegyptiaca (L) Del., also known as 'Desert date' in English, a member of the family Balanitaceae, is one of the most common but neglected wild plant species of the dry land areas of Africa and South Asia.
- Seed is used as expectorant, antibacterial, and antifungal. Fruit is used in whooping cough, also in leucoderma and other skin diseases.
- In Egyptian folk medicine, the fruits are used as an oral hypoglycemic and an antidiabetic;
- An aqueous extract of the fruit mesocarp is used in Sudanese folk medicine in the treatment of jaundice.
- Widely used as traditional herbal medicine.
- It is major source of saponin of yamogenin and diosgenin (Balanitin-1 to 7).







### Nominal chromatographic conditions of HPTLC method for estimation of diosgenin from *Balanites aegyptiaca* Extract

| Stationary Phase            | Precoated Silica gel G60 F254 aluminium Sheets 10×10 cm², layer Thickness 0.2 mm          |
|-----------------------------|-------------------------------------------------------------------------------------------|
| Mobile Phase                | Toluene: Ethyl acetate: Formic acid (7:2.8:0.2 v/v/v)                                     |
| Pretreatment                | TLC plates prewashed with methanol and activated in Oven $60 \pm 3^{\circ}$ C for 2.5 min |
| SPOTTING PARAMETER          |                                                                                           |
| Band width                  | 6 mm                                                                                      |
| Distance between two tracks | 8 mm                                                                                      |
| Spraying rate               | 150 nL/sec                                                                                |
| <b>DEVELOPMENT PARAMET</b>  | ERS                                                                                       |
| Chamber saturation time     | 20 min                                                                                    |
| Migration distance          | 80 mm                                                                                     |
| Temperature                 | Room temperature                                                                          |





### Nominal chromatographic conditions of HPTLC method for estimation of diosgenin from *Balanites aegyptiaca* Extract

| DERIVATIZATION PARARMETERS |                                                                                                   |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Spraying reagent           | Anisaldehyde + 5 mL sulphuric acid + 10 mL glacial acetic acid diluted up to 100 mL with methanol |  |  |  |  |  |  |
| Oven temperature & time    | 60 ± 3°C for 18 min                                                                               |  |  |  |  |  |  |
| SCANNING PARAMETER         |                                                                                                   |  |  |  |  |  |  |
| Slit dimension             | 4.00 mm × 0.30 mm                                                                                 |  |  |  |  |  |  |
| Wavelength of detection    | 426 nm                                                                                            |  |  |  |  |  |  |
| Lamp                       | Tungsten                                                                                          |  |  |  |  |  |  |
| Measurement mode           | Absorption/Reflection                                                                             |  |  |  |  |  |  |
| Scanning speed             | 20 mm/sec                                                                                         |  |  |  |  |  |  |







### Factors and Their Levels for Robustness Testing of HPTLC method for diosgenin (Case – 2)

|              |                                                   | Level   |             |          |  |  |  |
|--------------|---------------------------------------------------|---------|-------------|----------|--|--|--|
| Factor Label | Factor Name                                       | Low (-) | Nominal (0) | High (+) |  |  |  |
| А            | Toluene                                           | 6.3 mL  | 7 mL        | 7.7 mL   |  |  |  |
| В            | Ethyl Acetate                                     | 2.5 mL  | 2.8 mL      | 3.1 mL   |  |  |  |
| С            | Saturation Time                                   | 18 min  | 20 min      | 22 min   |  |  |  |
| D            | Solvent migration distance                        | 7.5 cm  | 8 cm        | 8.5 cm   |  |  |  |
| E            | Ratio of application band to detection slit width | 3/2 mm  | 6/4 mm      | 9/6 mm   |  |  |  |
| F            | Detection Wavelength                              | 425 nm  | 426 nm      | 427 nm   |  |  |  |
| G            | Oven Temperature                                  | 55°C    | 60°C        | 65°C     |  |  |  |





### Eight experiment Plackett-Burman design to examine the seven factors (A-G) selected for robustness testing of HPTLC method

|           |        | Response |        |                                        |       |         |        |                 |
|-----------|--------|----------|--------|----------------------------------------|-------|---------|--------|-----------------|
|           | Α      | В        | С      | D                                      | E     | F       | G      | Peak Area (n=3) |
| Run 1     | 1      | 1        | 1      | -1                                     | 1     | -1      | -1     | 3171.000        |
| Run 2     | -1     | 1        | 1      | 1                                      | -1    | 1       | -1     | 8454.667        |
| Run 3     | -1     | -1       | 1      | 1                                      | 1     | -1      | 1      | 4856.333        |
| Run 4     | 1      | -1       | 1      | -1                                     | -1    | 1       | 1      | 9539.333        |
| Run 5     | 1      | 1        | -1     | 1                                      | -1    | -1      | 1      | 7753.000        |
| Run 6     | 1      | -1       | -1     | 1                                      | 1     | 1       | -1     | 4989.333        |
| Run 7     | -1     | 1        | -1     | -1                                     | 1     | 1       | 1      | 5136.333        |
| Run 8     | -1     | -1       | -1     | -1                                     | -1    | -1      | -1     | 7894.667        |
| Run 9     | 0      | 0        | 0      | 0                                      | 0     | 0       | 0      | 6948.000        |
| Response  |        |          |        | Critical Effect ME <sub>(α=0.05)</sub> |       |         |        |                 |
| Peak Area | 2213.0 | -1044.7  | 1581.2 | -691.2                                 | 288.8 | -1530.7 | 2419.5 | 3711.6581       |





### Representative Pareto charts to show the influence of variables studied in the peak area measurement for diosgenin







#### Conclusions

- The robustness of the proposed methods was studied using DoEs and found to be robust at deliberate changes made in experimental conditions.
- Plackett-burman design can be used as an effective statistical tool for robustness testing of HPTLC methods.

### Acknowledgement







### Thank you for attention

