

The Novel TLC-Direct Bioautography Tests for Analysis of Antimicrobials

Irena M. Choma, Edyta M. Grzelak, Wioleta Jesionek M. Curie-Skłodowska University, Lublin, Poland

Barbara Majer Dziedzic University of Life Sciences, Lublin, Poland

HPTLC Lyon 2014

escherichia coli

Cladosporium cucumerinum

Candida albicans

Ali**j**vibrio fischeri

Reduction of tetrazolium salt (MTT) by dehydrogenases of living bacteria

Bacillus subtilis

Extinction of luminescence

Aliivibrio fischeri

Exponential calibration curves: rhombus – enrofloxacin, square – ciprofloxacin. The data from four bioautograms.

I.M. Choma et al., J. Liquid Chromatogr. @ Rel. Technol., 27 (2004) 2071

RP HPLC

I.M. Choma, J. Planar Chromatogr. - Modern TLC, 19 (2006) 104

Concentration of	Mean recovery %	Mean of the means%	STATES AND A DESCRIPTION OF A DESCRIPTIO
flumequine in milk	MSPD-TLC-DB	(RSD)	Flumequine in milk
10 ppm	56.02 (1 μl) 82.91 (2 μl) 66.88 (3 μl) 77.19 (4 μl) 64.75 (5 μl) 74.07 (1 μl) 79.44 (2 μl) 91.38 (3 μl) 83.74 (5 μl)	75.15±10.97 (14.6) F	
1 ppm	43.68 (5 μl) 83.77 (10 μl) 81.75 (15 μl) 49.29 (5 μl) 84.34 (10 μl) 89.0 (15 μl) 91.94 (20 μl)	74.82±19.73 (26.36)	
0.1 ppm	113.0 (50 μl) 39.77 (50 μl)	76.0	Sores are
0.05 ppm	70.0 (50 µl) 88.0 (50 µl)	79.0	bacillus subtilis

I.M. Choma, J. Liquid CHromatogr @ Rel. Technol. 29 (2006) 2083

Novel tests for TLC-DB

Optimization:

Escherichia coli (ATCC 25922) Gram – bacteria

Bacillus subtilis (ATCC 6633)

Gram + bacteria

pre-incubation - incubation time

and temperature (bacterial suspension),

- bulion density,
- type of TLC sorbent,
- incubation time (TLC plates),
- temperature and humidity of the

incubation chamber

preconditioning of TLC plates,

Grzelak E. M., Majer – Dziedzic B., Choma I. M. *JAOAC* 94 (2011):1567-1572 (*E.coli*). Grzelak E. M., Majer – Dziedzic B., Choma I. M. *JAOAC* 96 (2013): 386-391 (*B.subtilis*). Grzelak E. M., Jesionek W., Majer – Dziedzic B., Choma I. M. J. AOAC Int., 96 (2013) 1167-1174

TLC–DB against *E. coli.* M-H bulion (pH 7,2 ± 0,2) with the addition of agarose: (A) 0,1%; (B) 0,05%. TLC–DB against *B. subtilis*. M-H bulion (pH 7,2 ± 0,2) with agarose (C) 0,025%; (D) 0,05%; (E) 0,1%. TLC Si60F₂₅₄, 10 μ L of FLU standards at: 0,5; 0,5; 1,0; 1,0; 5,0; 10,0; 50,0 μ g/ml (up-down at left, down-up at right track)

TLC Si60F₂₅₄, 10 μ L of flumequine standards at: 0,5; 0,5; 1,0; 1,0; 5,0; 10,0; 50,0 μ g/ml (up-down at left, down-up at right track).

*Bacillus su*btilis: Disc diffusion assay (A) negative (0,1 μg FLU per disc); (B) positive (5,0 μg FLU per disc). Cylinder diffusion assay (C) negative (0,1 μg FLU per cylinder); (D) positive (5,0 μg FLU per cylinder).

APPLICATIONS

FOOD

PLANTS

Essential oils of conifers TLC-DB: E. coli **B.** subtilis **GC-MS** Douglas (%) Juniper (%) Compound RI Thuja Pine (%) Cypress (%) (%) 2,97 * 1,63 * α - thujene 930 3.08 pine 1,66 940 * α - pinene 14.63 27.44 40.38 * * * camphene 960 1,71 6,38 * * * sabinene 979 1.75 40.92 * * 987 **B**-pinene 20,07 1,30 2,2 β- myrcene 991 1,36 4,28 1,65 2,54 2,21 * * * α - terpinene 1016 2.99 16.08 cypress * * * 1024 0.65 1.20 p- cymene * * **D**-limonene 1036 * 0.67 88.51 * β - felandrene 1037 5.93 1,66 0,88 1,05 * * * 1049 5,10 0,69 **Z-ocimene** Green * * y - terpinene 1065 1,20 2,40 2,94 Douglas-fir. * 6- camphenon 1092 3,69 2,14 0,53 1,52 * * * * (+)-3-thujene 1100 38,16 * * * * α - thujene 1128 28,63 * * * * lavandulol 9.48 1165 juniper Z-dihydrocarvon 1192 * 1,08 * * 2,59 1205 * * * verbenone * 2,68 * 3,05 * * bornyl acetate 1294 45,34 * * * * 1344 3,52 butyl butanoate 1354 * * * * 1,86 terpinyl acetate * * * isolongifolene 1401 0.35 6.76 thuja * * 1441 1,61 4,1 0,07 aromadendrene * * * * phenethyl isovalerate 1490 2,07 * * * * α - muurolene 1500 2,94

homo-y-bisabolene

Σ(%)

*

100

1515

*

100

*

100

7,96

100

*

100

Mobile phase: chloroform : ethyl acetate : methanol (80:15:5)

Ukrain[™] (1) and C. majus alkaloid extract (2).

A - 254 nm, B - 366 nm, C - Vis-Dragendorff reagent, D – TLC-DB *B. subtilis.* Applied volume: 15 μL. Mobile phase: chloroform : ethyl acetate : methanol (77:15:8)

Mentha x piperita L.

mentha essential oil
mentha extract
menthol

Mobile phase: toluene/ethyl acetate (93/7)

W. Jesionek, E. M. Grzelak, B. Majer-Dziedzic, I.M. Choma, JPC 26 (2013) 109-113

Melisa officinalis L.

chloroform /ethyl acetate/methanol 1 /30/10

ethyl acetate /methanol / water 75/15/10

Pinus sylvestris L.

TLC

PLC

B. subtilis

chloroform/ diethyl ether/ methanol 30/10/1

Mobile phase: chloroform : acetone (90:10 v/v)

Bacterial strains: • Staphylococcus epidermidis (Se)

- Staphylococcus aureus (Sa)
- methicillin-resistant Staphylococcus aureus (MRSA)
- Xanthomonas campestris pv. vesicatoria (Xv)
- Pseudomonas syringae pv. maculicola (Psmlux)
- Aliivibrio fischeri (Af)
- Bacillus subtilis (Bs)

LC-TOF/MS identification of fraction 1 (F1)

Mobile phase: chloroform : ethyl acetate (60:40 v/v)

LC-TOF/MS results [M-H]⁺

	Fractions	t _R	Formula	Theoretical monoisotopic mass [M-H] ⁺	Measured m/z (ppm Diff)	Compound
(Am) – Achillea millefolium L.	F1	6.6	$C_{15}H_{10}O_5$	271.0601	271.0601 (0.03 ppm)	Apigenin
(Mch) – Matricaria chamomilla L.	F1				271.0601 (0 ppm)*	

LC-TOF/MS identification of fraction 2 (F2)

Mobile phase: chloroform : diethyl ether (60:40 v/v)

LC-TOF/MS results [M-H]⁺

	Fractions	t _R	Formula	Theoretical monoisotopic mass [M-H] ⁺ m/z	Measured m/z (ppm Diff)	Compound
(Mch) – Matricaria chamomilla L.	F2a	5.0	$C_9H_6O_3$	163.039	163.0387 (1.74 ppm)	Umbelliferone
	F2b	6.9	C ₁₈ H ₃₀ O ₂	279.2319	279.2314 (1.53 ppm)	α-Linolenic acid
(Am) – Achillea millefolium L.	F2b				279.2317 (0.43 ppm)	

Dr. Ágnes M. Móricz

Dr. habil. Györgyi Horváth

Thank you for your kind attention

References:

A. Marston, J. Chromatogr. A 1218, 2011, 2678-2683.

W. Brack et al., Env. Sci. Pollut. Res. 14, 2007, 30-38.

G. Morlock, W. Schwack, J. Chromatogr. A 1217, 2010, 6600-6609.

I.M. Choma, LC-GC Europe September 2005, 482-488.

I.M. Choma, E.M. Grzelak, J. Chromatogr. A 1218, 2011, 2684-2691.

E.M. Grzelak, B. Majer-Dziedzic, I.M. Choma, JAOAC Int. 94 (2011) 1567-1572.

E.M. Grzelak, B. Majer-Dziedzic, K.M. Pilorz, I.M. Choma, JAOAC Int. 96 (2013) 386 - 391

W. Jesionek, E. M. Grzelak, B. Majer-Dziedzic, I.M. Choma, JPC 26 (2013) 109-113.

E. Grzelak, W. Jesionek, B. Majer-Dziedzic, I. Choma, J. AOAC Int., 96 (2013) 1167-1174.