HPTLC-bioluminescence screening for residues of antibiotics in food of animal origin

Yisheng Chen (PhD)
Prof. Dr. Wolfgang Schwack
Research background

Reports for 2011 on the veterinary antibiotics monitoring program in EU

<table>
<thead>
<tr>
<th>Number of analyses</th>
<th>Non-compliant rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild game</td>
<td>0.00%</td>
</tr>
<tr>
<td>Farmed game</td>
<td>0.00%</td>
</tr>
<tr>
<td>Rabbit</td>
<td>0.12%</td>
</tr>
<tr>
<td>Eggs</td>
<td>0.12%</td>
</tr>
<tr>
<td>Milk</td>
<td>0.09%</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>0.35%</td>
</tr>
<tr>
<td>Poultry</td>
<td>0.07%</td>
</tr>
<tr>
<td>Horse</td>
<td>0.00%</td>
</tr>
<tr>
<td>Sheep/goat</td>
<td>0.40%</td>
</tr>
<tr>
<td>Pigs</td>
<td>0.15%</td>
</tr>
<tr>
<td>Bioven</td>
<td>0.30%</td>
</tr>
</tbody>
</table>

Therefore, the dramatic contrast between enormous sampling numbers and constantly low non-compliant rates (<0.5%) implies that screening-oriented methods are highly required.
Our strategy: screening-oriented

HPTLC + Biolumincent bioautography

450nm
Challenges faced in screening

1. Demanding sensitivity
2. Poor separation
3. Bio-active matrix

Methods should be highly sensitive: < 0.5 mg/kg

Tolerance limits (mg/kg)

United States

EU & China

Max. residue limits (mg/kg)

0.6 0.3 0.1 0.1
Challenges faced in screening

1. Demanding sensitivity
2. Poor separation
3. Bio-active matrix
Challenges faced in screening

1. Demanding sensitivity
2. Poor separation
3. Bio-active matrix

After QuEChERS extraction:

Milk Kidney
Detection optimization

OD 600 nm

Pre-incubation time (h)

0,06
0,11
0,19
0,33
0,47
1,00
1,33
1,38
1,42

Active cells were used

Logarithmic phase

Harvest point
Detection optimization

Screening on bio-compatibility of HPTLC Layers
Detection optimization

Time-dependent cytotoxicity of antibiotics below the acute lethal level.
Detection optimization

Layer moisture is a vital factor for living bacteria!

Incubation chamber Detection chamber
Window separation

- Bioactive matrix
- Nonpolar analyte
- Polar/tailing analyte

Window 2

Window 1

Sample 1 Standards Blank Sample 2
Window separation

Kidney matrix

Tetracyclines Quinolones

Samples Blank Samples

Amphenicol
Real sample application

Milk

- Window 1
- Window 2

Kidney

- Window 1
- Window 2
Detection spectrum

<table>
<thead>
<tr>
<th>Group</th>
<th>Milk</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biolum</td>
<td>Premi®*</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>😊</td>
<td>😞</td>
</tr>
<tr>
<td>Quinolones</td>
<td>😊</td>
<td>😞</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>😊</td>
<td>😞</td>
</tr>
<tr>
<td>Macrolides</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>Penicillines</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>😞</td>
<td>😊</td>
</tr>
</tbody>
</table>

* H Cantwell, Food Additives and Contaminants 23 (2006) 120.
Identification by TLC-MS

TLC-MS interface

Electrospray Mass spectrometry
Conclusion

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Biolum</th>
<th>Premi®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>Amino F$_{254}$S plates</td>
<td>Agar tubes</td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic</td>
<td>Manual</td>
</tr>
<tr>
<td>Quantitation</td>
<td>Semi-quantitative</td>
<td>Semi-quantitative</td>
</tr>
<tr>
<td>chromatography</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>MS compatibility</td>
<td>Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Figure:

- Bioluminometer with chromatogram overlay.
- Premi® equipment with sample preparation instructions.

UNIVERSITÄT HOHENHEIM
INSTITUT FÜR LEBENSMITTELCHEMIE
Thank you for your attention!

International Symposium for Thin-Layer Chromatography