
David Da Silva
Extraction, Bioactive molecules analysis

University of Orleans
Institute of Organic and Analytical Chemistry (ICOA)
Plants: unexploited source

I. Context

Plants constitute a rich source of bioactive substances

- The search for bioactive molecules from nature: play an important role in fashioning new cosmetic and medicinal agents.

- Important to develop a fast and reliable characterization method of polyphenols

II. Materials & Methods

III. Coupling

IV. Application

V. Conclusions
Plant extracts characterization process

I. Context
II. Materials & Methods
III. Coupling
IV. Application
V. Conclusions

- TLC-MALDI-TOF-MS coupling: Performance?
I. Context

II. Materials & Methods

III. Coupling

IV. Application

V. Conclusions

MALDI-TOF-MS principle

- **MALDI Source**
 - Nitrogen Laser at 337 nm
 - **POSITIVE and/or NEGATIVE** mode
 - $[\text{M-H}]^-$
 - $[\text{M+H}]^+$; $[\text{M+Na}]^+$ adducts

- **TOF-MS analyzer**
 - Drift region
 - Linear detector

Advantages:
- lower volume of solvent, sample
- fast and superficial desorption

Limitations:
- Fixed wavelenght Nitrogen laser
- Empirical process
General outlook of TLC-MALDI-TOF-MS coupling

I. Context

II. Materials & Methods

III. Coupling

IV. Application

V. Conclusions

- **Improvement of (fast) flavonoïds characterization in complex mixture**

TLC-MALDI-TOF-MS coupling

- Nitrogen Laser λ: 337 nm
- TLC plate
- MALDI-TOF-MS

CONVOLUTION OF 3 DIMENSIONS

- m/z measurement (specificity)
- m/z 609 => [M-H]$^-$
- RUTIN
 - Mw 610.5 g/mol
- Neu-Peg reagent (coloration = nature of families)

Informations obtained with this coupling:

- Polarity nature
- Nature of family compounds
- Molecular mass
TLC-MALDI-MS coupling: MALDI parameters

I. Matrix or not?
II. Matrix choice?
III. Deposition methods of matrix?
I. Matrix or not?

- Flavonoïds absorption: 255-366 nm
- Laser desorption at 337 nm

Evaluation: 17 polyphenol standards analyzed in absence and presence of matrix

<table>
<thead>
<tr>
<th>Samples</th>
<th>Matrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume: 1μL</td>
<td>volume: 1 μL</td>
</tr>
<tr>
<td>standards: 1000 ppm in EtOH</td>
<td>amount: 10mg/mL in EtOH</td>
</tr>
<tr>
<td></td>
<td>Dried droplet deposition</td>
</tr>
<tr>
<td></td>
<td>TLC silica aluminum</td>
</tr>
</tbody>
</table>

Matrix	Absence	Presence
Compounds detection | 30% | 100%

The use of a matrix is essential
II. Matrix choice?

In negative mode:
- higher sensitivity with MP > DHB > 9AA
- Low adducts form
- Easy identification with MP

✓ Selection of nonorganic (MP)

In positive mode:
- higher sensitivity with DHB > MP > 9AA
- high adducts form
- Identification more complex with DHB

✓ Selection of DHB
III. Deposition methods of matrix?

I. Spray deposition

<table>
<thead>
<tr>
<th>Samples</th>
<th>Volume: 10 µL</th>
<th>Rutin: 1000 ppm</th>
<th>Mixture: 100 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrice</td>
<td>Volume: 10 µL</td>
<td>Rutin: 10 µL</td>
<td>Mixture: 10 µL</td>
</tr>
</tbody>
</table>

SPAY deposition

- **Nonorganic matrix**: 2,5 DHB matrix
- **Mixture**: Rutin

Graph

- Intensity (counts)
- Flavonoid standards: rutin, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

- **MP_NEG**
- **DHB_POS**

Notes

- **Spray deposition**: Best sensitivity (higher Signal/Noise)

II. Dipping

<table>
<thead>
<tr>
<th>Samples</th>
<th>Volume: 10 µL</th>
<th>Rutin: 1000 ppm</th>
<th>Mixture: 100 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrice</td>
<td>1 immersion</td>
<td>Amount MP: 10 mg/mL</td>
<td>Amount DHB: 200 mg/mL</td>
</tr>
</tbody>
</table>

DIPPING

- **Nonorganic matrix**: 2,5 DHB matrix
- **Mixture**: Rutin

Graph

- Intensity (counts)
- Flavonoid standards: rutin, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

- **MP_NEG**
- **DHB_POS**

III. Coupling
Complex mixtures studied by TLC-MALDI-MS coupling:

- negative mode
- nonorganic matrix
- spray deposition
polyphenol mixture standards: TLC-MS

i) Neu-Peg

ii) TLC

iii) Mass spectra in negative mode

i) Neu-Peg

ii) TLC

iii) Mass spectra in negative mode

➤ Characterization of full mixture of polyphenol standards

Information obtained with this coupling:

- Polarity nature
- Nature of family compounds
- Molecular mass
Apple extract characterization: TLC-MS

I. Context

II. Materials & Methods

III. Coupling

IV. Application

V. Conclusions
Rose extract characterization: TLC-MS

I. Context

ii) TLC

iii) Mass spectra

iv) NEU-PEG

Tiliroside

Kaemf. rhamnose

Quer-3-glu

Ellagic acid

Gallic ac.
Conclusions and outlook
Conclusions

- TLC-MALDI-TOF-MS coupling process:
 - Matrix or not? YES
 - Matrix choice? MP in negative mode
 - Deposition methods of matrix? SPRAY DEPOSITION

- Characterization of polyphenol compounds:
 - Standards and mixtures: 50-1000 ppm
 - 8 Extract plants: unknown concentration per molecules
Acknowledgements

Gaëlle Martial-Marzolff
Laëtitia FOUGERE
Emilie DESTANDAU
Benoit MAUNIT
Claire ELFAKIR

Extraction, Bioactive molecules analysis

Institut de Chimie Organique et Analytique (ICOA)

La Région Centre

Merck KGaA (Germany)
Compatibility with revelation

2,5 DHB matrix

Revelation NEU-PEG

Nonorganic matrix

Revelation NEU-PEG

compound Mixtures

compound Mixtures
II. Matrix choice ?

Classiquement utilisées en Maldi-Tof

En mode négatif

- 9 amino-acridine (9AA)
 - 194.23 g/mol

- 2,5-dihydroxybenzoïque (DHB)
 - 154.12 g/mol

En mode positif

- Matrice inorganique synthétisée par le laboratoire (MP)

En mode négatif/positif

- Flavonoid compounds

I. Context
II. Materials & Methods
III. Coupling
IV. Application
V. Conclusions