

HPTLC profile of substituted coumarins derived from microbial transformation

Jayashree B.S., Nigam S., Patel H.H.

Dept. of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences Manipal University, India – 576104

Introduction

- * Microbial biotransformation is a biological process whereby an organic compound is modified or converted to a new product reversibly or irreversibly by micro-organism.
- It is one of the tools of Green Chemistry

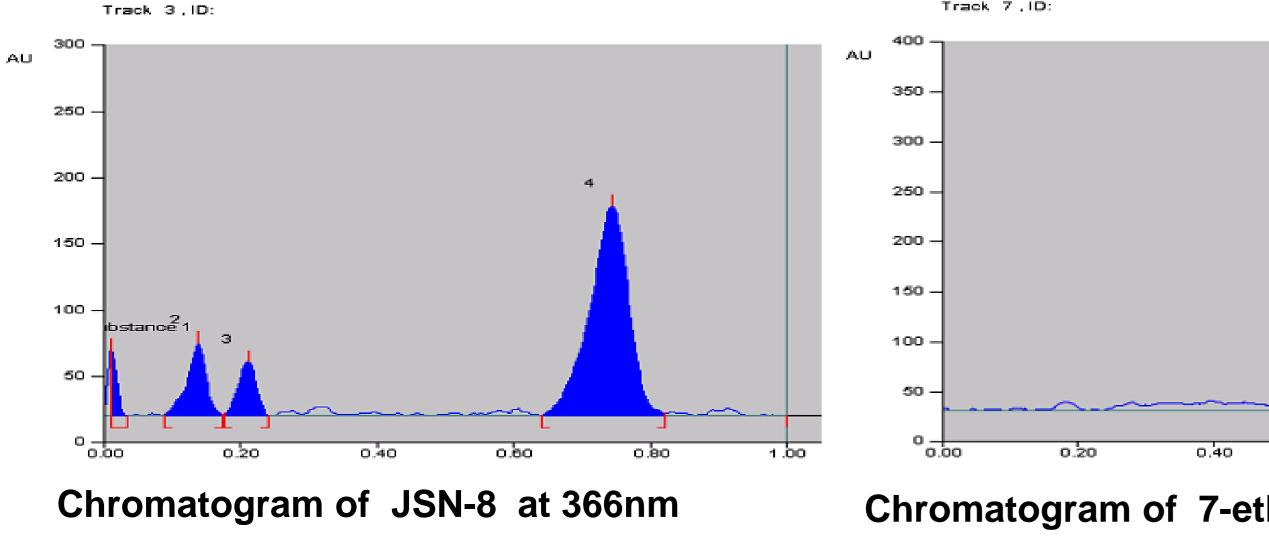
Objective

- Study the microbial transformation of some of the substituted coumarins.
- establishing the conditions suitable for Standardisation and biotransformation.
- Identification and characterisation of the transformed products, using NMR, Mass spectra and HPTLC.

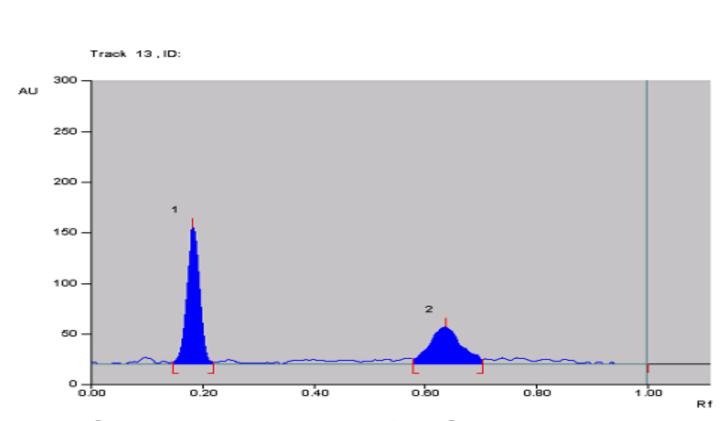
Methods

- * Nine biotransformation experiments were performed, where, random combination of four micro-organisms and five substrates (JSN-1 to JSN-9) showing optimum recovery of the final compounds were selected.
- The bio-transformations were selected from the preliminary study to scale- up the process, based on the results of TLC obtained.

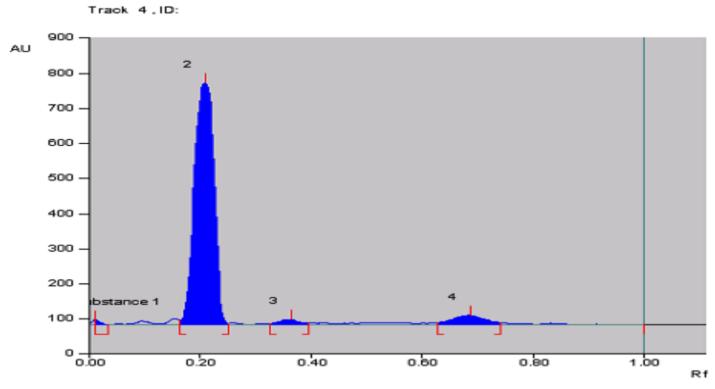
Sr. NO	Organism	CODE	Substrate
1	Candida tropicalis	JSN-3	7-hydroxy-4-methylcoumarin
2	Gliocladium roseum (NCIM 1037)	JSN-4	3-acetyl coumarin
3	Streptomyces griseus	JSN-7	7-methoxy coumarin
4	Streptomyces griseus	JSN-8	7-ethoxy-4-methylcoumarin
5	Streptomyces griseus	JSN-9	7-methoxy-4methylcoumarin


HPTLC: Figure 1 shows, HPTLC plate developed in Bnz:MeOH(9:1) loaded with crude test extracts, substrate and standards, scanned at 366nm.

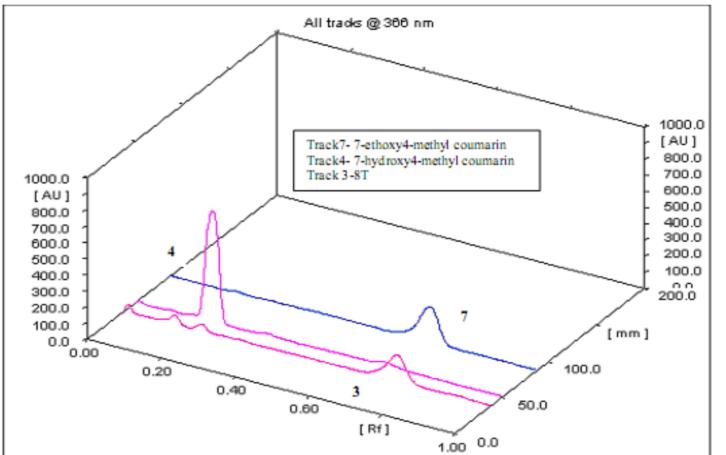
* Extract JSN-8 showed 4.24% conversion of test compound 7ethoxy-4methylcoumarin to 7-hydroxy-4-methylcoumarin, whereas extract JSN-3 showed 5.52% conversion of 7-hydroxy-4methylcoumarin to 7-methoxy 4-methylcoumarin.



Track 7 .ID:


Figure 1

Chromatogram of 7-ethoxy-4-methylcoumarin at 366nm


Chromatogram of JSN-3 at 366nm

Chromatogram of 7-methoxy-4methylcoumarin

Chromatogram of 7-hydroxy-4methylcoumarin at 366nm

Results and Discussions

Out of the nine biotransformation experiments performed on different substrates using specific organism, the following transformations have been expected to occur successfully:

Sr. NO	Organism	COD E	Substrate	Transformed product
1	Candida tropicalis	oicalis JSN- 7-hydroxy-4- 7-methoxy-4met 3 methylcoumarin	7-methoxy-4methylcoumarin	
			ОН	(5.52% yield)
2	Streptomyces griseus	JSN- 8	7-ethoxy-4- methylcoumarin	7-hydroxy-4-methylcoumarin
				(4.24% yield)

Conclusion

- ❖ HPTLC was performed for crude test extracts such as JSN-3, JSN-4, JSN-8, JSN9 and JSN-7 using solvent system Benzene: Methanol (9:1). The crude test extracts showed the presence of both starting substrate and the final product.
- Mass spectra and HPTLC data analysis, supported the occurrence of two biotransformation, such as, conversion of 7-ethoxy-4methylcoumarin to crude product of 7-hydroxy-4-methylcoumarin in 4.24% yield by Streptomyces griseus and the conversion of 7hydroxy-4-methylcoumarin to crude product of 7-methoxy 4methylcoumarin in 5.52% yield by Candida tropicalis.

References

1Lawrence Philip Wackett, C. Douglas Hershberger. Biocatalysis and biodegradation microbial transformation of organic compounds. Marcel Dekker, New York, NY 9. 1995; 22: 24.

2. James E Leresche, Hans-Peter Meyer. Chemocatalysis and biocatalysis (biotransformation): Some thoughts of a chemist and of a biotechnologist. Organic Process Research & Development 2006; 10(3):572-580.

3. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature. 2001; 409: 258.

Acknowledgement

I duly acknowledge the DST for providing the infrastructure under 'FIST' scheme and Manipal University for the facility.