µ - PLC to detect falsified fruit preservation.

 Rudolf E. Kaiser & Olga Kaiser
 Institute f. Chromatography Bad Duerkheim, Germany
 rudolf.kaiser@t-online.de
 kaiserolga@t-online.de u-PLC has been developed to detect product falsifications.

Its technique, tools and first applications have been e-published as a free book :

www.planar-chromatography-by-kaiser.com

What is the difference µ-PLC to HPTLC? The following is NOT available in HPTLC.

- Sample size: below 1 nl to over 1 ml.
- 2 to 6 samples partially overlapped on 10x10 cm plates circular positioned.
- Strictly focussed in the plate centre as µ-circle.
- <u>Completely</u> dried (air / N₂, 2 L/min, 20 degr C).
- Constant flow mobile phase .
- Gas phase <u>reactions</u>, if needed.
- Digital photo <u>multi integration</u>, if needed.

Specialities in µ-PLC versus HPTLC :

- Taking, giving, positioning and enriching liquid or solved samples in µ-PLC exclusively by micro brushes.
- No mobile phase tank. Replaced by a static gas phase layer of 1 mm thickness in precise horizontal position.
- No beta phases in μ-PLC.
- Mobile phase in constant flow from a closed 1 ml micro flasc through a wick into the HPTLC plate centre under glass cover.

Precision and accuracy conditions in µ-PLC :

- Phase inlet position + 0.2 mm central.
- Plate positioning strictly vertical.
- Phase flow, drying and gas phase treatment at constant temperature and strictly symmetrical.

No errors exist in <u>compare</u> µ-PLC besides wrong sample or sampling

- No any quantitation needed if compared samples differ in their <u>overlapped region</u>, then quantity errors simply NOT possible.
- In THIS case we have 100 % save results with the statement: "the substances differ qualitatively for sure"
- This is the <u>first time</u> an analytical result "it differs" is error free. But overlapping is mandatory which means: it is an analytical "sample-within-sample" technique.

Possible quantitation quality in µ-PLC:

In case quantitative differences are detectable there ARE errors – of course, but:

Quant. comparability data normally reach +- 0.5 % and could be improved to +- 0.05 % rel. standard deviation by multi integration, which runs at N >= 4, <u>never</u> at N < 4, like in most of the regulated analyses.

Classical PLC and HPTLC

µ-PLC is always circular

comparing samples: Classical PLC/HPTLC analyses run samples > parallel to each other. All GC, HPLC a.s.o. analyse samples > next to each other. This differs fundamentally from μ -PLC. It analyses circular by partial overlapping > within each other.

Only this new technique offers 100%, safety of results", see the simple facts in the green triangles :

u-PLC instrument is a complicated and / or expensive tool ??

Not at all.
Read the free e-book

www.planar-chromatography-by-kaiser.com

About 200 pages, 200 figures, click-connected.

Taking extract samples from a fruit surface by a wet u-brush

• 1 cm² extr. by micro brush no.3 to 5 with CH_2CI_2

Why does this work ?

- The capillary forces in a slightly wet brush tip are STRONGER than in a < 0.5 mm i.d. micro glass tube. Equal type liquids are very fast soaked from the tube into the slightly wet brush.
- But the capillary forces at the porous PLC layer surface are stronger than in a wet micro brush tip.
- Therefore: there is a perfect material transportation from a fruit surface into the brush tip and from here into the thin layer – nearly quantitative and fast.
- This is physics. Now the chemistry:

The fruit surface is covered by natural products solvable in CH₂Cl₂. They chemisorb on silicagel. Impregnated fruit surfaces add further material, which may be visible by planar chromatography, see the "BIO"-orange material below:

Sampling spot limitations on 10 mm hexagon, 6 samples. TH = Thiabendazol, IM = Imazalil, OP = ortho Phenylphenol about 20 µl, 0.1 % solutions each. Chemisorbing natural skin materials show PLC problems.

Also fokussing is at its limits after the first 20 µl CH₃OH because of the chemisorbing natural skin substances

Despite of poor sampling spots and focussing at limits : it is clearly seen : fruit ,1' is illegally coated. Fruits 2, 3 and 5 look like not truly ,BIO'

Under normal conditions in overlapped sampling focussing and separation works fine under µ-PLC

This way it is easy to identity falsified medical products – example VIAGRA : only A is authentic. Q1, Q2, Q3 are faiked. Quantitation if necessary with N up to 16 repetitions

 Three of the clearly falsified VIAGRA's have been ordered through the Internet.

 I got these samples from my ,Apotheker' who asked me for a critical compare analysis because of problems his customers had.

So only ONE pill, the authentic one, was OK

 A few days ago we got from a pharma company one original drug and its ,remake' – as important anti cancer medicine. Remake and Original DIFFER strongly!

Remake 7 integr.chrom. each Original

Back to chemisorbing plant material, it complicates separation. It reduces the phase flow locally irregular – see the red pointed positions. left: UV 254 right: FLU

"Bio"-Lemon versus a <u>real</u> Bio-lemon : Clear answer: "BIO" is illegally treated .

Chemicals: not removable by washing

with hot water: No effect also by addons like ascorbic acid or using warm olive oil.

1 = IM-mandarin1 [shop ,A' (minimum sampling)] OK 2 = mandarin2 [shop ,B' same town, same road,] NOK 3 = OP (ortho phenylphenol) test substance 4 = Bio-lemon [shop ,B' (minimum sampling)] NOK 5 = TH (Thiabendazol)

6 = Bio-orange [shop ,B' (minimum sampling)] NOK

20 diff. plant surface analyses would to day show >10 not acceptable results: (as a mean)

Still in 2011 accepted protection substances :

- Thiabendazol
- (TH)
- o-Phenylphenol
- (PH)
- Imazalil
- (IM)

TH, IM and PH also used on potatoes, bananas, grain. Information about treated goods is often regulated by law. Critical concentrations.

- Lots of health warnings / strict regulation / time of future usage is by part already limited.
- <u>http://de.wikipedia.org/wiki/Imazalil</u>
- <u>http://www.sciencelab.com/xMSDS-</u>
 <u>2_Phenylphenol-9926513</u>
- <u>http://www.private-health-organisation.de/</u>
- About the chemistry and toxicity of <u>falsified</u> materials is by now NOTHING KNOWN.

Natural skin surface protection

• Also on GRAPE, BANANA, POTATO :

TEST compound quality is quantitatively checked: Quantitation by multi integration, N = 6.

Comparing two "equal ??" TEST compounds a & b quantitatively. N = 6

%-values impurity in TEST subst. a,b: the purity difference ,a' versus ,b' is highly signifikant TAU >t(99) because of a large enough N=6 purity of test substance ,a' = <u>97.8 +- 0.09 %</u>

• purity of test substance ,b' = 97.3 +- 0.11 %

	Rp Table = Rf as % position in integration tracks					Rp Table = Rf as % position in integration tracks							
	Rp-data	Peak 1	Peak 2				Rp data	Peak 1	Peak 2				I
	Track 1	0,26	0,74	- 5	S		Track 1	0.20	0.68				Ť
	Track 2	0,26	0,75				Track 2	0.20	0.68			2 X 1	t
	Track 3	0,27	0,75	1	a'		Track 3	0.21	0.68		'b'	5	1
	Track 4	0,27	0,75				Track 4	0.21	0,00	1 10 10	~	2 8	1
	Track 5	0,27	0,76				Track 5	0.21	0,03			2	t
	Track 6	0,27	0,76				Track S	0,21	0,70				+
				area Table			TTACK 0	0,22	0,70	TLL			1
	raw area Peak 1 Peak 2 Pp y area1 Pp y area2 area 2 %					area lable							
	Track 1	070	15970	254.54	117/3 80	07 970	raw area data	Peak 1	Peak 2	Rp x area1	Rp x area2	area 2 %	
	Track 1	515	15070	204,04	11745,00	97,079	Track 1	1426	15848	285,20	10776,64	97,422	
	Track Z	916	15554	230,10	11665,50	97,999	Track 2	1411	15401	282.20	10472,68	97,376	1
	Track 3	893	14814	241,11	11110,50	97,876	Track 3	1444	15841	303 24	10771 88	97 262	1
	Irack 4	919	14444	248,13	10833,00	97,761	Track /	1/197	16577	31/ 37	11/38 13	97 325	t
	Track 5	942	14834	254,34	11273,84	97,794	Track F	1400	17200	256 70	10177.00	07 452	ł
	Track 6	979	15226	264,33	11571,76	97,767	TTACK 5	1405 4	1/390	350,79	12111,20	97,155	+
	mean	938,0	15123,7			97,846	mean	1495,4	10212,0			97,300	+
	S					0,091	S					0,105	+
(RSD %					0.09	RSD %					0,11	4

Quantitation by multiintegration For quantitation the μ -PLC formula is simple:

Total areaY – in % = RpY x areaY x 100 / sum (RpY...n x areaY...n)

Reason:

circular PLC with multiple runs; N always > 4 Rp is the relative bow position from centre to integration border. Here no Rf value acceptable.

Quantitation in PLC: by non linear calibration lines only ! The fundamental law of NON linearity in PLC calibration lines needs graphical statistics at best using "Polynomial Interpolation" You have it ? (It exists as PI-rek-E11 program)

Sorry: this was a polynom 2nd degree. You better use a 3rd degree Polynom:

During the μ -PLC film production we found drug falsification : A is NOT Q

Method rules:

- <u>Cleanest</u> CH₂Cl₂ necessary (blank !!).
- Enrich extract samples only <u>under UV</u> to check blockage by chemisorbing substances early.
- Separation partially "in-each-other" is MUST.
- ,Hexagon sampling' is at its limits, only 3..4 samples are better ?
- <u>> one run</u> needed to correct signal symmetry.
- Place qualitative inner standards <u>onto</u> the focus <u>border</u> circle.
- Use always UV 254 at least together with 336 nm.

Multi PLC runs repair symmetry

Multi integration: 4 tracks, each switched by 1 degree angle.

Integration can be checked in single steps. This costs time but brings quality.

Sorbfil TLC Videodensitometer - Kaiserogram	_ <u>_ </u> _ ×
File Edit Mode Tracks Language ?	
1 2 3 4 5	
Track 1 Evaluation	
Mode Examination Smoothing ?	
大人人人 ◆ ⇔ ⇒ × Mm ✓ m → 気 : 8 peak(s)	
I I V V 2₩3₩4 ⁴ 5 I 6 W 7 I 8 V	
Next Accept Cancel	

Digital values, 7 substances, N = 5

Nc	o area	RSD%	height	RSD%
1	11154.8	0.937	2571.2	0.718
2	11003.8	0.525	1807.0	0.639
3	38429.8	0.600	4596.8	0.272
4	46302.4	0.350	4000.0	0.163
5	39413.0	0.520	3502.0	0.093
6	7733.8	0.695	978.8	0.606
7	24617.0	0.143	2052.8	0.156
S	178645	0.164 %	19509	0.091 %

RSD = $100 \times \text{rel. standard deviation / mean}$ This is possible because of plate structure reduction. ₄₄ Multiple scans show good comparability. This is necessary to reach +- 0.1 to +- 0.05 % <u>comparability</u> standard deviation. NOTE: Comparability – not reproducibility. This is harder to find in standard analyses.

VIS

Light optmization is possible by multi integration software.

