

Ultrathin-Layer Chromatography on Nanoengineered Thin Films

S.R. Jim^{1, *}, M.T. Taschuk¹, A.J. Oko¹, and M.J. Brett^{1,2}

Distance [mm]

¹ Department of Electrical and Computer Engineering University of Alberta Edmonton, Canada

² NRC National Institute for Nanotechnology Edmonton, Canada

Conseil national de recherches Canada

National Institute for Nanotechnology

Institut national de nanotechnologie

Chevron Media

Blade-Like Media

July 6, 2011

Overview

Diagonal dye separation pattern on an anisotropic ultrathin-layer chromatography plate fabricated using glancing angle deposition

Figure from S.R. Jim et al., Anal. Chem. (2010).

- Higher performance with nanostructuring
- Glancing angle deposition (GLAD)
- GLAD ultrathin-layer chromatography (UTLC) microstructures
- Channel features in anisotropic GLAD UTLC media and their effects on elution
- Final thoughts

Higher Performance with Nanostructuring

Stationary Phase Layer Properties	TLC ^{1,2} (particles, silica gel 60)	HPTLC ^{1,2} (particles, silica gel 60)	UTLC ¹⁻³ (monolithic, silica gel)	GLAD UTLC ⁴⁻⁷ (columnar SiO ₂)
Typical Thickness (μm)	100 – 250	100 – 200	10	4.5 – 5
"Characteristic" Size (µm)	10 – 12 (mean particle size)	4 – 6 (mean particle size)	1 – 2 (macropore size)	0.1 – 0.8 (intercolumn void)
Pore Size (Å)	60	60	30 - 40	20 - 40
Specific Surface Area (m ² g ⁻¹)	520	480 – 540	~ 350	~ 450
Representative		HTI C ^{1,2}	UTI C ¹⁻³	
Elutions				
Elutions Development Time (s)	> 900	> 180	60 – 360	< 90
Elutions Development Time (s) Development Distance (mm)	> 900	> 180	60 - 360 10 - 30	< 90 10 - 14
Elutions Development Time (s) Development Distance (mm) Limit of Detection (ng, absorption)	> 900 70 – 150 1 – 5	> 180 30 - 70 0.1 - 0.5	60 - 360 10 - 30 0.5	< 90 10 – 14 < 10

¹ S.K. Poole and C.F. Poole, *J. Chromatogr. A.* (2011); ² ChromBook 2008|09, Merck KGaA, Darmstadt, Germany (2008); ³ H.E. Hauck and M. Schulz, *J. Chromatogr. Sci.* (2002); ⁴ S.R. Jim *et al.*, *Anal. Chem.* (2010); ⁵ A.J. Oko *et al.*, *J. Chromatogr. A.* (2011); ⁶ K.M. Krause *et al.*, *Langmuir* (2010); ⁷ K.M. Krause *et al.*, *Microporous Mesoporous Mater.* (2011).

July 6, 2011

Glancing Angle Deposition (GLAD) and UTLC Microstructures

Shadowing and Sculpting Architectures, Advantages, and Applications GLAD Microstructures and Elution Channel Features in Anisotropic Media Migration in Anisotropic Microstructures

Shadowing and Sculpting

Glancing angle deposition couples self-shadowing with substrate motion control to sculpt columnar thin films of useful morphologies.

Figure from S.R. Jim et al., Anal. Chem. (2010).

July 6, 2011

Architectures, Advantages, and Applications

Representative scanning electron micrographs of GLAD morphologies

(a) Vertical post, (b) chevron, (c) bladelike, (d) helical, (e) nanoribbon, and (f) hybrid structures.

- Key Capabilities
 - Excellent control over porosity and architecture
 - Variety of materials
 - Patented single-step technology compatible with microfabrication
- Applications
 - Rapid relative humidity sensors
 - Optical and photovoltaic devices
 - Planar chromatography

Images reproduced from (a-c) S.R. Jim *et al.*, *Anal. Chem.* (2010); (d) P.C.P Hrudey *et al.*, *Proc. SPIE* (2005); (e) J.J. Steele *et al.*, *J. Mater. Sci.: Mater. Electron.* (2007); (f) A.C. van Popta *et al.*, *Proc. SPIE* (2004).

GLAD Microstructures and Elution

Micrographs of macroporous GLAD thin film separation media

Scanned images of developed GLAD UTLC plates

Figures modified from S.R. Jim et al., Anal. Chem. (2010).

Channel Features in Anisotropic Media

 Development track deviation angle (Δθ) as a measure of the "extent of anisotropy":

$$\Delta \theta = \theta_C - \theta_T$$

Figure modified from S.R. Jim et al., Anal. Chem. (2010).

(1)

Ultrathin-Layer Chromatography on Nanoengineered Thin Films (O-2b)

Migration in Anisotropic Microstructures $\alpha = 82.5^{\circ}$ $\alpha = 84^{\circ}$ $\alpha = 85.5^{\circ}$ $\alpha = 87^{\circ}$

Low and high magnification top view SEM micrographs of ~ 5 μ m thick SiO₂ blade-like films fabricated with varied deposition angle (α)

Figure modified from A.J. Oko et al., Anal. Chem. (2011).

July 6, 2011

Migration in Anisotropic Microstructures

Along-channel ($\theta_c = 0^\circ$) chromatograms for GLAD UTLC plates of varied porosity (varied deposition angle, α)

Chromatograms for $\alpha = 87^{\circ}$ blade-like plate with channels oriented at varied angles (θ_c)

Figures modified from A.J. Oko et al., Anal. Chem. (2011).

Final Thoughts

Conclusions Acknowledgements Further readings on the GLAD technique and on GLAD UTLC

July 6, 2011

Conclusions

- Planar chromatography performance improves with stationary phase microstructure engineering.
- GLAD provides excellent control over the porosity and architecture of columnar UTLC microstructures.
- Anisotropic GLAD UTLC media exhibit channel features that strongly influence analyte migration velocities, separation track orientations, and spot broadening.
- Ongoing research aims to combine the benefits of anisotropic media with post-processing and bettersuited chromatography instrumentation to produce a high-performance GLAD UTLC system.

Ultrathin-Layer Chromatography on Nanoengineered Thin Films (O-2b)

- GLAD Lab Group (including the other members of the GLAD UTLC team: Z. Wang and L. Bezuidenhout)
- G. Morlock and W. Schwack (Institute for Food Chemistry, U. Hohenheim; Stuttgart, Germany)
- SEM expertise of G. Braybrook and D.-A. Rollings (U of A EAS SEM Lab); J. Siewert (GLAD Lab)
- RIE help from S. Munro (NanoFab)
- Custom apparatus fabrication (U of A ECE Machine Shop)

Further reading on GLAD UTLC

- 1. A.J. Oko, S.R. Jim, M.T. Taschuk, M.J. Brett, "Analyte migration in anisotropic nanostructured ultrathin-layer chromatography media", *Journal of Chromatography A* 1218(19), 2661-2667 (2011).
- 2. S.R. Jim, M.T. Taschuk, G.E. Morlock, L.W. Bezuidenhout, W. Schwack, M.J. Brett, "Engineered Anisotropic Microstructures for Ultrathin-Layer Chromatography", *Analytical Chemistry* 82(12), 5349–5356 (2010).
- 3. G.E. Morlock, C. Oellig, L.W. Bezuidenhout, M.J. Brett, W. Schwack, "Miniaturized planar chromatography using office peripherals", *Analytical Chemistry* 82(7), 2940-2946 (2010).
- 4. L.W. Bezuidenhout, M.J. Brett, "Ultrathin layer chromatography on nanostructured thin films", *Journal of Chromatography A* 1183(1-2), 179-185 (2008).

Further reading on the GLAD technique and applications

- M.T. Taschuk, M.M. Hawkeye, M.J. Brett, "Glancing Angle Deposition," Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, P. Martin (ed.), Oxford, United Kingdom: William Andrew (Elsevier), 621-678 (2010).
- M.J. Brett, M.M. Hawkeye, "New materials at a glance," *Science* 319(5867), 1192-1193 (2008).
- 3. M.M. Hawkeye, M.J. Brett, "Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films," *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films* 25(5), 1317-1335 (2007).

Steven R. Jim, PhD Candidate (<u>sjim@ualberta.ca</u>) Michael J. Brett, Professor (<u>mbrett@ualberta.ca</u>)

July 6, 2011