

Ultrathin–layer chromatography using electrospun nanofibers

SusanV. Olesik Department of Chemistry Ohio State University

International Symposium for High-Performance Thin-Layer Chromatography Basel

July 6, 2011

- Ultra-Thin Layer Chromatography (UTLC)
 - Uses thin stationary phase (~10 μm) in comparison to HPTLC (~ 200 μm)
 - Non-traditional stationary phase structures
 - Silica Monoliths and Nanostructures
 - Improve sensitivity while reducing analysis time and amount of consumables required
 - Lower sample capacity than HPTLC

Electrospinning Apparatus

- Electrospinning is a process in which a polymer solution is used to make ultrafine fibers
 - Electric field is applied to the polymer solution
 - Charge repulsion causes formation of Taylor cone

- Any polymer that can be electrospun can be used as the stationary phase
- 2 polymer systems:

• Polyacrylonitrile (PAN)

Initial studies

- The ability of a polymer solution to form uniform fibers is dependent upon many parameters:
 - Solution properties
 - Polymer molecular weight
 - Viscosity
 - Conductivity
 - Surface tension
 - Electric field
 - Applied voltage
 - Distance from tip to collector
 - Solution flow rate
 - Temperature
 - Humidity

Effect of Concentration

UTLC -- Electrospun Polyacrylonitrile Fibers

SEM micrographs of the electrospun stationary phase used for UTLC

% Acetone (Acetone:H₂O)

Variation in Retention Factor

High Efficiency

J.E. Clark and S.V. Olesik Anal. Chem. 81(10), 4121-9 (2009).

Ultra-thin layer chromatography using electrospun fibers

$$N = 16 \left(\frac{Z_s}{w}\right)^2$$

	CN-Modified TLC Spot Width (mm)	Electrospun PAN UTLC Spot Width (mm)	
Androsterone	5.2	0.6	
Cholesterol	5.5	1.6	
Cortisone	9.6	0.35	

High Efficiency

High Efficiency

E-ULTC: Polyacrylonitrile Fibers

•400 nm fibrous stationary phase

•E-ULTC requires less time and therefore less solvent than typical TLC plates

•Efficiency of the separations substantially improved compared to that determined using commercial phases.

•Separations used minimal materials (1 mL polymer) and solvent (< 5 mL)

• Mat thickness impacts efficiency. Thicker mat improved efficiency

J. Clark, S. Olesik, Anal. Chem. <u>81</u> (10) 4121-4129 (2009).

Carbon Ultra-Thin Layer Chromatography

Device	Mat Thickness (µm)	Avg. Fiber Diameter (nm)
PAN UTLC	24 ± 1.8	395 ± 55
600°C	16 ± 1.4	330 ± 70
800°C	10 ± 1.0	300 ± 70
1000°C	13 ± 1.5	220 ± 70
Silica Gel	200	N/A

Migration Distance as a Function of Fiber Diameter

Lucas-Washburn Model Predicting Solvent Travel Behavior

$Z_f^2 = \frac{\gamma Rt \cos \phi}{2\eta}$	Device	Mat Thickness (µm)	Avg. Fiber Diameter (nm)	Effective Pore Radius, <i>R</i>
γ = surface tension η = solution viscosity	PAN	24 ± 1.8	395 ± 55	515 ± 10 nm
	600°C	16 ± 1.4	330 ± 70	475 ± 35 nm
	800°C	10 ± 1.0	300 ± 70	400 ± 15 nm
Bin 1950 data 1 GU de 31 - Ban	1000°C	13 ± 1.5	220 ± 70	380 ± 25 nm
Р 8.0µm 7.9µm 6.7µm Р7.4µm	Silica Gel	200	5-17 μm diameter	345 ± 25 nm

Study of Separation of Laser Dyes

Rhodamine 101

Rh610P & Rh610Cl $(H_5C_2)_2N$ $\xrightarrow{} V(C_2H_5)_2 X^ CO_2H$ $X^-=Cl^-$

Kiton Red

Retardation Factors of Laser Dyes

Left ● rhodamine 610 perchlorate, ○ rhodamine 610 chloride, ▼ kiton red Right ○ pyrromethene 597, ▼ rhodamine 101, ● sulforhodamine 640 Mobile phase: 2-propanol.

Laser Dye Separation

Jonathan E. Clark, S.V. Olesik, J. Chromatogr. A, 1217 (27) 4655-4662 (2010).

Efficiency Comparison

Efficiency Comparison

High Resolution

Laser Dye Analysis

Lysine

Threonine

Tunable Retention

TLC Device	R _f		
	Lys	Thr	Phe
600°C	0.64 ± 0.04	0.91 ± 0.04	0.79 ± 0.06
800°C	0.59 ± 0.06	0.72 ± 0.22	0.79 ± 0.23
1000°C	0.56 ± 0.04	0.50 ± 0.22	0.51 ± 0.24

Migration Order:

-600°C: Thr-Phe-Lys -800°C: Phe-Thr-Lys

Efficiency Comparison

	Plate Number, N			
Compound	600°C	800°C	1000°C	Cellulose*
Lysine	37,500±4500	6800±650	330±40	370
Threonine	195,000±6100	32,400±3400	330±20	2100
Phenylalanine	476,000±7900	29,600±4500	290±30	N/A

*S.A. Nabi, M.A. Khan, Acta Chromatogr. <u>13,</u>161(2003).

High Resolution

Amino Acid Analysis

Variation of Plate Number with Development Distance

		Plate Height (micron)	
Development	Lysine	Threonine	Phenylalanine
Distance (cm)			
4.6000	21.9048	3.0667	1.5185
5.5000	16.1765	2.5000	1.3939
5.9000	11.8000	1.0727	1.0727

Biodegradeable Polymers: Electrospun Polyvinyl Alcohol

190±50 nm

Importance of Cross-linking

No crosslinking

Crosslinked and soaked water

Crosslinked and soaked in optimized solvent (ethanol/butanol/water)

20 micron thick mat with 190 nm fibers

Optimization of linjection volume

Efficiency Comparison to Commercial Phase

Summary

E-UTLC provides

- Lower mobile phase use than other TLC separations
- Higher speed separations
- Improved efficiency
- Devices are chemically and mechanically robust

Future:

Much to be studied on exactly how improved efficiency is gain further work on improving precision of retention factors underway

Acknowledgments

Funding: NSF- Chemistry Division; NSF-Engineering Division, NSEC; NSF-Engineering - Fluid Dynamics Division

Funding for Education Efforts: NSF-DGE, NSF-DUE, Ohio Board of Regents