

b

Overview of Chromatography 1/2

- Chromatography has become the mainstay of organic analysis because it greatly simplifies both <u>qualitative</u> and <u>quantitative assessments</u>
- Technological advancement ⇒ higher pressure liquid systems, more uniform and smaller particle stationary phases, modified stationary media, more robust and repeatable sample introduction systems
- Significant technology infrastructure to sustain them including <u>spare parts inventories</u> and skilled technicians to perform <u>repairs, corrective</u> and <u>preventive</u> maintenances and updates

Pharm R&D Lab

Overview of Chromatography 2/2

- The more sophisticated systems become the more significant sustainability issues arises.
- Sustainability is a measure of the <u>probability of a</u> <u>system failing</u> and the <u>availability of resources</u> required restoring it to an operational state;
- The lower the probability of failure and/or the greater the availability of restoration resources the more sustainable.

Moving Things from Point A to Point B Mechanical Technology Sustainability

Selection of Test Methods

HPLC technology

HPLC is currently the state of art equipment for assay, dissolution and content uniformity testing in most pharmacopoeial monographs

- Demonstrate:
 - Excellent <u>robustness</u>, accuracy, precision, <u>selectivity</u>, <u>sensitivity</u> and also <u>linearity and range up 3 orders of</u> magnitude.
 - On the other hand –high consumption of <u>expensive</u>, "<u>time consuming"-</u> one sample at time,
- Resource constrained setting?

Overview of Chromatography 2/2

- TLC and the closely related (HPTLC) are members of a class planar chromatography where the separation solvent flow is <u>driven by capillary</u> <u>action</u>.
- Requires no <u>pumps, valves, pressure controls</u>, etc., so the chromatography systems are much more sustainable in any world market

HPTLC application in Africa 1/2

Method Developed and validated Via SLV

- Shahista Hasan, Development and Validation of An HPTLC Densitometric Method for <u>Quantitative Analysis of Metronidazole</u> in Tablets, Unpublished student thesis work, MUHAS, (2007).
- Michael Sinda, Development and Validation of An HPTLC Densitometric Method for assay of Quinine in Tablets, Unpublished student thesis work, MUHAS, (2007).
- Jane Evarist, Development and Validation of An HPTLC Densitometric Method for assay of Nevirapine in Tablets, Unpublished student thesis work, MUHAS, (2007).
- Ikombola Juma, Development and Validation of An HPTLC Densitometric Method for simultaneous <u>assay of Lamivudine and zidovudine</u>
- Meshaki Shilinde, Development and Validation of An HPTLC Densitometric Method for assay of Amodiaquine in Tablets, Unpublished student thesis work, MUHAS, (2007).
- Mufaddal .S. Hassanali, Development and Validation of An HPTLC Densitometric Method for <u>Analysis of Ciprofloxacin</u> in Commercial Formulations, Unpublished student thesis work, MUHAS, (2007).

7

Improving the TLC based Testing methods

What has been done

- TFDA, SOP and MSH have collaboratively worked to <u>develop and validate</u> HPTLC- Densitometry <u>methods for</u> <u>assay</u> of selected essential medicines.
- MUHAS-MSH-CAMAG demonstrated <u>transferability of the</u> <u>methods- JAOAC –two lab Peer Method Verification</u>

8

JAOAC Peer Method Verification approach (PMV)

Setting up inter-laboratory cross validation

- MUHAS- originator
- CAMAG lab-
 - Receiving laboratory performed the method
 - To demonstrate where there are differences and gaps in documentation
 - Lack of detailed test method instructions

 Assay Conditions
 Calculations
 System Suitability

Differences with instrumentation

9

Method Transfer Protocol

- Test Method Example
 - Parameters being assessed
 - Precision, specificity, etc.
 - □ Sample Preparation/Reagent
 - Performance Parameters
 - Different analyst on different days
- Pre-defined Acceptance Criteria
- Statistical Analysis
- Sign-off by Quality Assurance Unit

HPTLC-densitometer

- Metronidazole- qualifying
- Nevirapine
- Quinine
- Lamivudine/zidovudine

2-lab collaborative

Summary conditions

Table 1 The developing solvent mixture ratios are						
presented in the table below						
	Developing Solvent Mixture Ratio					
	Ethyl Toluen Metha Ammonia Ace					
Product	Acetate	е	nol	(25%)	one	
Lamivudine	12	5	3			
-Zidovudine						
Metronidaz	50			1		
ole						
Nevirapine	15	5				
Quinine	22			3	5	

T	able 2. Poly	nomial Correlations	<u>: 50-80-100-</u>	-120-150%		
		MUHAS)	CAMAG		
		Correlation Coefficient	rsd%	Correlation coefficient	rsd%	
Lamivudine	Plate 1	0.99889	2.17	0.99919	1.95	
	Plate 2	0.99991	0.64	0.99976	1.10	
	Plate 3	0.99865	2.36	0.99989	0.72	
Metronidazole	Plate 1	0.99967	0.90	0.99919	1.65	
	Plate 2	0.99998	0.23	0.99918	1.66	
	Plate 3	0.99948	1.18	0.99971	0.99	
Neviranine	Plate 1	0.99955	1 26	0.99990	0.63	
	Plate 2	0 99940	1.20	0.99966	1 16	
	Plate 3	0.99977	0.93	1.00000	0.14	
		Γ				
Quinine	Plate 1	0.99924	1.50	0.99979	0.83	
	Plate 2	0.99994	0.43	0.99991	0.53	
	Plate 3	0.99972	1.26	0.99978	0.88	
Zidovudine	Plate 1	0.99958	1.31	0.99945	1.84	
	Plate 2	0.99953	1.40	0.99989	0.76	
	Plate 3	0.99957	1.27	0.99960	1.43	
	11 4	0.00015	1.00	0.000((1.02	

Table . 3 Metronidazole- Study qualifying					
MUHAS			CAMAG		
Average	99.41%		Average	97.81%	
rsd	2.08%		rsd	1.81%	
Interlaboratory Summary					
Average	98.61%		RSD	2.09%	

Table 4. Quinine						
	Summary					
MUHAS CAMAG				IAG		
Average	95.67 %		Average	98.34 %		
rsd	2.17%		rsd	1.78%		
Interlaboratory Summary						
Average	97.00 %	0	RSD	2.39 %		

Table 6. Nevirapine					
Summary					
MUHAS			CAMAG		
Average	101.75 %		Average	96.08 %	
rsd	1.39%		rsd	1.34 %	
Interlaboratory Summary					
Average	98.92 %		RSD	3.21 %	

Table 5. Lamivudine-Zidovudine					
MUHA	S	CAMAG	CAMAG		
Summa	ry	Summa	ry		
Lam	104.4	Lam	101.0		
average	%	average	%		
Lam rsd	2.58	Lam rsd	1.92		
	%		%		
Zid	106.8	Zid	106.2		
average	%	average	%		
Zid rsd	2.05	Zid rsd	3.26		
	%		%		
Interlaboratory Summary					
Lam	102.7	Zid	98.92		
average	%	average	%		
Lam RSD	2.88	Zid RSD	3.21		
	%		%		

be.

JAOAC publication

E. Kaale, P. Risha, E. Reich, and T. Layloff. An Interlaboratory Investigation on the Use of High Performance Thin Layer Chromatography to Perform Assays of Lamivudine-Zidovudine, Metronidazole, Nevirapine, and Quinine Composite Samples, <u>JOURNAL</u> <u>OF AOAC INTERNATIONAL VOL. 93, NO. 6, 2010</u>

General Conclusion

Advantages of using HPTLC -Densitometry in Pharmaceutical analysis: Our experience

- Similar precision and accuracy to HPLC
 - Interday and intraday
 - Sensitivity adequate for assay/DT/ID/Content Uniformity
- High sample throughput
 - Sample preparation involve few steps
 - 20-30 min 18 samples on one plate while it would be much longer for HPLC
- Relatively cheap
 - Solvents
 - Use less solvents 20 mL for 18 samples cf. more than 600 mL(30 min run 1 mL/min) in HPLC
 - Uses analytical grade not HPLC grade (cheap Methanol HPLC grade USD 82, analytical grade 39,) possibility of recycling
 - Reagents based on Minilab

 Set up inter laboratory collaborations for cross validation of the methods with key partners (SoP-TFDA, WHO, MSH, Camag)

Proposal monograph to IP

Share the cross validated methods with local industries as means of reducing analytical costs and improving quality of products.

Acknowledgements

- B Pharm students who worked tirelessly to do lab work.
- □ SOP-MUHAS
- □ MSH
- Dr. Eike
- □ Giz for financial support

