

Automated coupling of planar chromatography with mass spectrometry

G. Morlock*, M. Aranda, L. Luftmann *Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany

Detection of bio-active compounds

What is it?

G. Morlock, W. Schwack LCGC Eur July, in press

$\mathsf{HPTLC}\to\mathsf{MS}$

Approaches of HPTLC/MS coupling

HPTLC	C/MS
Elution	Desorption
Anderson/Busch 1998 Micro capillary arrow	Atom beam FAB Bare/Read 1987
Hsu/Shiea et al. 2003 Electro transfer	Excited gas
⊕ Van Berkel et al. 2002 Micro junction	Ion beam SIMS Orinak/Arlinghaus et al. 2002
	Light beam SALDI Wu/Chen 2002
Luftmann 2004 Extractor head Prosek et al. 2004 Extractor head	MALDI Gusev/Hercules et al. 1995
	Electrospray DESI Van Berkel et al. 2005 +

Online extraction

Institute of Food Chemistry University of Hohenheim, Stuttgart

H. Luftmann, Anal Bioanal Chem 378 (2004) 964 A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543

The hands-free interface called 'R3D3'

R3D3 working...

Data of validation without IS

- \rightarrow repeatability (%RSD) in matrix of 5.6 % (*n* = 6)
- \rightarrow linear response (R²) of 0.9973

H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) 3772

Analysis of samples containing caffeine

 \rightarrow comparable findings to validated HPTLC/UV methods (F-test, t-test)

Sample	Pharmaceutical Mean ± SD (mg/tablet)	Energy drink Mean ± SD (mg/100 mL)
HPTLC/ESI-MS	102.09 ± 5.76	<mark>32.91</mark> ± 1.60
RSD (%, n = 6)	(5.6)	(4.9)
HPTLC/UV	101.98 ± 2.30	33.71 ± 0.96
RSD (%, n = 5)	(2.3)	(2.8)
Label	100	32

Comparison of differently shaped cutting edges

Cutting edge height

- 0.2 mm for standard HPTLC layers (plates or foils)
- 0.1 mm for extra-thin layers \rightarrow U. Jautz et al. Anal Bioanal Chem 387 (2007) 1083
- 0.5 mm for preparative layers \rightarrow E. Dytkiewitz et al. see poster

Cutting edge geometry

Elution profiles

Elution profiles

Institute of Food Chemistry University of Hohenheim, Stuttgart

U. Jautz, G. Morlock, J Planar Chromatogr, in submission

Detectability: FLD versus MSD

Detectability by HPTLC/ESI-MS-MS

- \rightarrow LOQ better than 20 pg/zone Harman (S/N 20)
- \rightarrow detectability comparable to HPLC/MS

U. Jautz, G. Morlock, J Chromatogr A 58 (2006) 244

Approaches of HPTLC/MS coupling

HPTLC	C/MS
Elution	Desorption
Anderson/Busch 1998 Micro capillary arrow	Atom beam FAB Bare/Read 1987
Hsu/Shiea et al. 2003 Electro transfer	Excited gas
⊕ Van Berkel et al. 2002 Micro junction	Ion beam SIMS Orinak/Arlinghaus et al. 2002
	Light beam SALDI Wu/Chen 2002
Luftmann 2004 Extractor head Prosek et al. 2004 Extractor head	MALDI Gusev/Hercules et al. 1995
	Electrospray DESI Van Berkel et al. 2005 +

Comparison to other interfaces

HPTLC/ESI-MS via R3D3

- ✓ common ionization principle
 - ✓ universally connectable to any LC-MS system given
 - ✓ without adjustments or mass spectrometer modifications
 - ✓ fully automated (hands-free)
 - ✓ no extra plate preparation
 - ✓ whole plate, all layers and carriers
 - ✓ detectability in the pg/zone-range
 - ✓ with good linear range and repeatability without internal standard
 - ✓ withstands validated methods
 - ✓ cost-effective interface for manual positioning available
- $\dot{\mathfrak{S}}$ \checkmark no scan function

Comparison of automated interfaces

Parameter	Precision %RSD	Linear Response r ²	
Quantification without internal standard			
R3D3/ESI	≤ 5.6 %	0.9973	
DESI	≤ 16.8 %	0.95 - 0.98	

Quantification with internal standard

Micro-junction ESI	≤ 4.4 %	0.9999
SALDI/APCI	7 %	0.9991
MALDI	\leq 8.9 %	0.9969

Special thanks go to ...

CAMAG, Muttenz/CH Merck, Darmstadt/D Landesstiftung BW (Project No. P-LS-E2/25)

Institute of Food Chemistry University of Hohenheim, Stuttgart

CHROMart by Drs. Karla und Herbert Halpaap

Why HPTLC?

