Is there a fine future for HPTLC in the modern API plants? Actual experiences

Louise Vicard - sanofi-aventis - Neuville-sur-Saône

* Brazil, Russia, India, China and Mexico – source IMS

Sanofi-aventis at a glance

Sanofi-aventis' growth is based on a regional approach to markets...

Well balanced net sales

[Europe	44 %
United States	34 %
Other countries	22 %

Nearly 100,000 employees

- **55,000 in Europe**,
- 16,000 in the United States,
- 29,000 in other countries

entis

Sanofi

Sanofi-aventis Neuville-sur-Saône site

Located 15 km north of Lyon, one of the most important API sites. 1000 people working in a 30 ha space.

Our mission: manufacturing for Healthcare

Main active ingredients manufactured

Corticostéroïdes
for Hydrocortisone[®] and others anti-inflammatory, antiallergic

for Nilandron[®], anti-cancer agent

Dolasétron For Anzemet[®], antiemetic

Nilutamide

Hydrocortisone Roussel[®] 10 mg

sano

L'essentiel c'est la santé.

 And, in the launching unit
Dronedarone for Multaq[®], Clopidogrel for Plavix[®], Eprinomectrine for Eprinex [®]

Introduction

Most of the time, HPTLC is used for the analysis of Medicinal Plants while HPLC, due to his precision, is mainly used in the pharmaceutical industry. But, in some cases, HPLC has more drawbacks than HPTLC (solvent consumption, equilibration time, matrix effects, need for UV absorbance).

With four examples, we will present the advantages of using an HPTLC method to monitor chemical reactions during API production.

Example 1: Epoxydation reaction

Analytical objective

To determine the end of an epoxydation reaction while components have no UV absorbance, the industrial reaction mixture is in CH₂Cl₂ suspension, and the matrix is complex (minerals and organics)

Action expected

To continue the reaction time if specification is not met

- **Analytical conditions**
- Material: HPTLC plates silica gel 60 F254 (Merck) 20x10 cm
- Application: spay bands of 6 mm, dissolution solvent CHCl₃/MeOH : 9/1
- Mobile phase: CH₂Cl₂/MeOH : 97/3
- Development: ADC, front position 50 mm, pre-conditioning time 5 mn
- Post-chromatographic derivatization: by spraying phosphomolybdic acid reagent (25g H₃[PMo₁₂O₄₀].xH₂O, 500mL CH₃COOH, 25 mL H₂SO₄), heat ~5 mn at 130°C

ventis

Total analytical time: 35 mn

- Solution preparation: 7 mn
- Application: 8 mn
- Pre-conditioning: 5 mn
- Development: 10 mn
- Derivatization: ~5 mn

- Camag ATS 3
- Camag ADC
- **Desaga** ChromaJet DS20
- Camag TLC Plate Heater III

sanofi aventis

Example 2: End of washing

Analytical purpose

Verify elimination of reactant from the main reaction mixture by liquid-liquid extraction

Action expected

Add more extraction steps if specification not met

Analytical conditions

- Material: HPTLC plates silica gel 60 F254 (Merck) 10x10 cm
- Application: spay bands of 6 mm, dissolution solvent: MeOH+NH₄OH
- Mobile phase: CH₂Cl₂/MeOH/NH₄OH : 47/6/1
- Development: TTC normal, front position 70 mm,
- Post-chromatographic derivatization: by spraying Nihydrin reagent (1g Nihydrin, 50mL EtOH, 10 mL CH₃COOH), heat ~2 mn at 130°C

Total analytical time: 35 mn

- Solution preparation: 5 mn
- Application: 5 mn
- Development: 20 mn
- Derivatization: ~5 mn

Apparatus

- Camag ATS 4
- Camag TTC and SmartALERT
- Manual spray system
- Camag TLC Plate Heater III

sanofi aventis

Example 3: Reduction reaction Analytical purpose Compare 2 available analytical methods (HPLC and HPTLC)

Verify that reduction is completed after 3h reaction time

Action expected

- Choose the more reliable method to implement in production routine
- Add reaction time if specification not met

Example 3: Reduction reaction

Analytical conditions for HPTLC

- Material: HPTLC plates silica gel 60 F254 (Merck) 20x10 cm
- Application: spray bands of 6 mm
- Mobile phase: CH₂Cl₂/MeOH : 98/2
- Development: ADC, front position 40 mm
- Examination: UV 254 nm

Analytical time: 20 mn

- Solution preparation: 5 mn
- Application: 5 mn
- Development: 10 mn

Results:

Impurity \leq 1%

Example 3: Reduction reaction

Example 3: Reduction reaction

Conclusion

- For routine analysis, to be done by operators during shifts, HPTLC was chosen for its simplicity of implementation:
 - no apparatus for preparation and occupation,
 - > no suitability test and standard pre-injection,
 - Iow solvent consumption,
 - Iow risk of instrumentation failure,
 - satisfactory precision,
 - analysis time equivalent.

Example 4: End of hydrolysis reaction

Analytical purpose

- Verify if hydrolyze is completed (less than 1 % initial product)
- The analytical method must be as simple as possible in order to minimize investment, analytical time, and implementation.

Action expected

Add reaction time or acid if specification isn't met

- **Analytical conditions**
- Material: HPTLC pre-scored plates silica gel 60 F254 (Merck) 5x5 cm
- Application: capillary contact
- Mobile phase: CH₂Cl₂/Isopropyl ether/AcOEt : 42/2/6
- Development: TTC 10x5 cm, front position 35 mm
- Post-chromatographic derivatization: immersion in phosphomolybdic acid reagent diluted 50% in MeOH, heat ~5 mn at ~130°C

sano

L'essentiel c'est la santé.

18

- Solutions preparation: 7 mn
- Application: 1 mn
- Development: 7 mn
- Derivatization: 5 mn

- Camag Nanomat
- Camag Capillary dispenser
- Camag TTC and SmartALERT
- Laboratory devices !

Sanofi aventis

Conclusion

For those 4 examples of monitoring chemical reactions, HPTLC was chosen by:

- simplicity of implementation by plant operators,
- Iow risk of instrumentation failure and low cost,
- no needs of instrument conditioning and rinsing,
- possibility of derivatization,
- no problem of matrix effect and column contamination

The methods have to be adapted according to the analytical purpose:

- > When precision is required: a complete calibration is necessary,
- When a short analytical time is required: small plates and migration distance,

HPTLC is always possible with or without sophisticated instrumentation

sanofi