A COMPARATIVE STUDY OF MOLECULAR LIPOPHILICITY INDICES OF SOME FORMYLAND ACETYLPYRIDINE-3THIOSEMICARBAZONE DERIVATIVES ESTIMATED BY RP- HPTLC AND CALCULATED LOG P VALUES

Cristina Onişor and Costel Sârbu

Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania costelsrb@yahoo.co.uk

QSAR/QSPR/QSRR

> QSAR - Quantitative Structure-Activity Relations

- relates molecular structure to biological activity
> QSPR - Quantitative Structure-Property Relations
- correlates molecular information with different properties
> QSRR - Quantitative Structure-Retention Relations
- explains chromatographic retention by molecular information

Lipophilicity

> Log P estimated by direct equilibration method or by calculation according to different mathematical models
> Octanol - water partition coefficient (Log P)

$$
P=C_{o} / C_{w}
$$

> The "flask shaking" method has some disadvantages:
> it is tedious
$>$ time consuming
$>$ may be applied in a limited range on the lipophilicity scale

Estimation of Lipophilicity by RPTLC

> RPTLC method based on the assumed linear relationship between the molecular parameter R_{M} and $\log P$

$$
R_{M}=\log (1 / R f-1)
$$

> \boldsymbol{R}_{M} (related to molecular lipophilicity) depends linearly on the concentration of the organic modifier of the mobile phase

$$
R_{M}=R_{M o}+b C
$$

$>\varphi_{0}=R_{\mathrm{Mo}^{\prime}} / b$

Principal Component Analysis

- Principal component analysis (PCA) is a favorite tool in chemometrics for data compression and information extraction.
- PCA finds linear combinations of the original measurement variables that describe the significant variations in the data.
- PCA represents in an economic way the location of the compounds in a reduced coordinate system describing the data set with maximum possible information.
- PCA gives both coordinates (scores) of the studied compounds and the loadings of variables on the principal components.

Structure of the studied compounds

Structure of the studied compounds

10

12

Experimental

- Stationary phase: C_{18} silica gel bonded plates
, $\mathrm{RP}-\mathrm{C}_{18} / \mathrm{UV}_{254}(20 \times 20 \mathrm{~cm})$
. $\mathrm{RP}-\mathrm{C}_{18} \mathrm{~W}^{\mathrm{W}} \mathrm{UV}_{254}(10 \times 20 \mathrm{~cm})$ Merck (Darmstadt, Germany)
> Mobile phase: methanol-water (25-45 \%; 15-35 v/v)
> Colored zones appeared on a colorless background
> fluorescent blue-orange zones under UV lamp ($\lambda=365 \mathrm{~nm}$)

Lipophilicity indices based on retention data ($\mathrm{RP}-\mathrm{C}_{18}$ silica gel)

$\mathbf{C p d}$	$\mathbf{R}_{\mathbf{M o}}$	\boldsymbol{b}	$\boldsymbol{\varphi}_{\mathbf{0}}$	$\mathbf{P C 1}_{\mathbf{R F}}$	Mean $\mathbf{R F}$	PC1 RM	Mean RM
$\mathbf{1}$	0.922	-0.029	-31.893	-0.434	0.549	1.153	-0.090
$\mathbf{2}$	1.332	-0.046	-29.275	-0.600	0.621	1.486	-0.262
$\mathbf{3}$	2.160	-0.060	-36.063	-0.277	0.473	0.726	0.061
$\mathbf{4}$	1.611	-0.050	-32.020	-0.495	0.570	1.227	-0.152
$\mathbf{5}$	2.297	-0.062	-37.107	-0.217	0.445	0.568	0.129
$\mathbf{6}$	3.407	-0.080	-42.485	0.180	0.273	-0.518	0.597
$\mathbf{7}$	3.195	-0.071	-44.874	0.295	0.227	-0.715	0.702
$\mathbf{8}$	2.951	-0.065	-45.747	0.276	0.224	-0.662	0.693
$\mathbf{9}$	3.862	-0.086	-44.856	0.355	0.199	-1.083	0.846
$\mathbf{1 0}$	3.465	-0.076	-45.593	0.352	0.197	-0.949	0.802
$\mathbf{1 1}$	3.080	-0.068	-45.100	0.288	0.225	-0.671	0.687
$\mathbf{1 2}$	2.850	-0.063	-45.244	0.278	0.235	-0.562	0.644

Lipophilicity indices based on retention data

($\mathrm{RP}-\mathrm{C}_{18} \mathrm{~W}$ silica gel)

$\mathbf{C p d}$	$\mathbf{R}_{\mathbf{M o}}$	\boldsymbol{b}	$\boldsymbol{\varphi}_{\mathbf{o}}$	$\mathbf{P C 1}_{\mathbf{R F}}$	Mean $\mathbf{R F}$	$\mathbf{P C 1}$ $\mathbf{R M}$	Mean $\mathbf{R M}$
$\mathbf{1}$	1.468	-0.056	-26.254	-0.523	0.469	1.414	0.069
$\mathbf{2}$	1.345	-0.053	-25.615	-0.547	0.488	1.480	0.031
$\mathbf{3}$	2.198	-0.071	-30.777	-0.241	0.334	0.646	1.069
$\mathbf{4}$	1.519	-0.056	-27.269	-0.464	0.446	1.273	0.125
$\mathbf{5}$	2.074	-0.067	-30.994	-0.222	0.333	0.657	0.399
$\mathbf{6}$	2.801	-0.066	-42.313	0.363	0.099	-1.018	1.144
$\mathbf{7}$	2.493	-0.059	-42.534	0.317	0.120	-0.767	1.025
$\mathbf{8}$	2.371	-0.066	-35.703	0.084	0.214	-0.054	0.708
$\mathbf{9}$	3.300	-0.090	-36.872	0.234	0.143	-0.820	1.062
$\mathbf{1 0}$	2.169	-0.045	-48.296	0.372	0.100	-0.777	1.044
$\mathbf{1 1}$	3.075	-0.081	-37.781	0.255	0.137	-0.779	1.039
$\mathbf{1 2}$	2.755	-0.061	-45.544	0.372	0.095	-1.255	1.243

Computed different Log P

. Computer programs based on atom contributions:

- SciQSAR: Log ${ }^{1}$
- SciLogP: LogPc
- Chem3D Ultra 8.0: LogP², PartCoeff
- XLOGP: XLOGP
> Computer programs based on atom/fragment contributions:
- KOWWIN: KOWWIN
, Computer programs based on fragmental contributions:
- cLogP: cLogP
- Computer programs based on atom-type electrotopological--state indices and neural network modeling:
- ALOGPS: ALOGPs, AB/LogP, miLogP, AvLogP, COSMOFrag
- IAlogP: IAlogP

Values of the computed $\log P$

Cpd	LogP 1	LogPc	LogP 2	Part Coeff	ALOGPs	AB/LogP	COSMO Frag	miLogP	KOWWIN	XLOGP	AvLogP
$\mathbf{1}$	0.953	0.253	0.395	1.375	1.010	1.690	-0.130	0.830	1.310	0.080	0.800
$\mathbf{2}$	1.279	2.382	0.785	1.088	1.090	1.090	0.130	0.710	0.790	0.490	0.720
$\mathbf{3}$	1.273	2.765	1.254	1.513	1.690	3.050	1.340	1.580	2.270	1.020	1.820
$\mathbf{4}$	1.468	2.345	0.350	1.324	1.320	0.790	0.790	0.630	1.950	0.630	1.020
$\mathbf{5}$	1.530	1.755	1.643	1.113	1.720	2.450	1.690	1.460	1.750	1.430	1.750
$\mathbf{6}$	2.624	2.804	2.443	2.769	2.780	3.110	1.920	2.860	3.840	1.960	2.750
$\mathbf{7}$	2.459	3.694	2.832	2.482	2.830	2.510	2.220	2.740	3.320	2.370	2.670
$\mathbf{8}$	2.948	2.388	2.397	2.278	2.940	2.600	2.880	2.660	4.480	2.510	3.010
$\mathbf{9}$	2.967	3.037	2.418	3.241	3.120	3.150	3.980	2.900	4.690	2.980	3.470
$\mathbf{1 0}$	1.361	2.669	2.502	1.408	2.370	3.210	2.550	2.140	3.160	2.030	2.580
$\mathbf{1 1}$	2.929	2.545	2.892	1.121	2.430	2.610	2.800	2.020	2.640	2.430	2.490
$\mathbf{1 2}$	2.825	2.262	2.457	0.917	2.540	2.700	3.450	1.930	3.800	2.580	2.830

Variable	$\mathrm{R}_{\mathrm{Mo}}{ }^{18}$	b^{18}	$\varphi 0^{18}$	$\begin{aligned} & \text { PC1 } \\ & \mathrm{RF}^{18} \end{aligned}$	$\begin{gathered} \text { Mean } \\ { }_{\text {RF }}{ }^{18} \end{gathered}$	$\begin{aligned} & \mathrm{PC1} \\ & \mathrm{RM}^{18} \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { RM }^{18} \end{gathered}$	$\mathrm{R}_{\text {Mo }}{ }^{18}{ }_{\mathrm{w}}$	$b^{18 W}$	¢0 ${ }^{18 \mathrm{~W}}$	$\begin{gathered} \text { PC1 } \\ \mathrm{RF}^{18 \mathrm{~W}} \end{gathered}$	Mean $\mathrm{RF}^{18 \mathrm{~W}}$	$\begin{gathered} \mathrm{PC} 1 \\ \mathrm{RM}^{18 \mathrm{~W}} \end{gathered}$	Mean $\mathrm{RM}^{18 \mathrm{~W}}$
$\mathbf{L o g} \mathbf{P}^{1}$	0.75	-0.67	-0.79	0.79	-0.79	-0.78	0.78	0.86	-0.60	-0.56	0.75	-0.75	-0.78	0.65
LogPe	0.70	-0.77	-0.53	0.53	-0.53	-0.55	0.53	0.53	-0.24	-0.52	0.59	-0.59	-0.57	0.62
LogP ${ }^{2}$	0.92	-0.83	-0.96	0.95	-0.95	-0.95	0.94	0.86	-0.36	-0.86	0.95	-0.95	-0.94	0.84
PartCoeff	0.60	-0.62	-0.43	0.48	-0.48	-0.53	0.52	0.52	-0.44	-0.27	0.43	-0.43	-0.42	0.38
ALOGPs	0.95	-0.88	-0.94	0.94	-0.95	-0.95	0.95	0.88	-0.46	-0.78	0.91	-0.91	-0.90	0.81
AB/LogP	0.81	-0.77	-0.79	0.79	-0.79	-0.80	0.79	0.78	-0.42	-0.73	0.79	-0.81	-0.78	0.88
COSMOFrag	0.90	-0.82	-0.91	0.91	-0.91	-0.91	0.91	0.89	-0.53	-0.74	0.85	-0.86	-0.87	0.80
miLogP	0.92	-0.87	-0.89	0.90	-0.91	-0.92	0.91	0.84	-0.45	-0.75	0.88	-0.88	-0.86	0.81
KOWWIN	0.87	-0.79	-0.87	0.87	-0.88	-0.88	0.88	0.81	-0.43	-0.71	0.82	-0.83	-0.82	0.76
XLOGP	0.93	-0.85	-0.95	0.95	-0.95	-0.95	0.95	0.90	-0.50	-0.78	0.90	-0.91	-0.91	0.81
AvLogP	0.95	-0.88	-0.95	0.95	-0.96	-0.96	0.96	0.91	-0.50	-0.79	0.91	-0.92	-0.91	0.86
$\mathrm{R}_{\mathrm{Mo}}{ }^{18}$	1.00	-0.97	-0.92	0.93	-0.94	-0.95	0.94	0.88	-0.43	-0.83	0.93	-0.94	-0.92	0.85
b^{18}		1.00	0.81	-0.82	0.82	0.85	-0.83	-0.83	0.46	0.74	-0.85	0.86	0.84	-0.81
¢0 ${ }^{18}$			1.00	-0.99	1.00	0.98	-0.99	-0.85	0.34	0.88	-0.96	0.96	0.94	-0.85
$\mathrm{PC1}_{\mathrm{RF}}{ }^{18}$				1.00	-1.00	-1.00	1.00	0.86	-0.35	-0.89	0.96	-0.97	-0.95	0.85
$\mathrm{Mean}_{\text {RF }}{ }^{18}$					1.00	1.00	-1.00	-0.86	0.35	0.88	-0.96	0.96	0.95	-0.85
PC1 $\mathbf{R M}^{18}$						1.00	-1.00	-0.86	0.37	0.88	-0.96	0.96	0.94	-0.84
$\mathrm{Mean}_{\text {RM }}{ }^{1}$							1.00	0.86	-0.36	-0.87	0.96	-0.96	-0.94	0.83
$\mathrm{R}_{\mathrm{Mo}}{ }^{18 W}$								1.00	-0.73	-0.67	0.85	-0.86	-0.88	0.86
$b^{18 W}$									1.00	-0.02	-0.26	0.29	0.32	-0.40
¢0 ${ }^{18 \mathrm{~W}}$										1.00	-0.95	0.95	0.93	-0.84
$\mathrm{PC1}_{\text {RF }}{ }^{18 \mathrm{~W}}$											1.00	-1.00	-0.99	0.90
$\mathrm{Mean}_{\text {RF }}{ }^{18 W}$												1.00	0.99	-0.92
$\mathrm{PC1}_{\text {RM }}{ }^{18 \mathrm{~W}}$													1.00	-0.91
Mean ${ }_{\text {RM }}{ }^{18 W}$														1.00

Conclusions

> The lipophilic character of of formyl- and acetylpyridine-3thiosemicarbazone derivatives has been investigated using TLC retention data and and various calculated $\log P$
> Statistically significant correlations were found between lipophilicity indices, $\mathrm{R}_{\mathrm{M} \circ}, \varphi 0$, scores corresponding to $\mathrm{PC1}$ and a new scale based on the mean of retention indices
> The scores corresponding to PC1 and the mean of retention indices appeared to be the best solution for the lipophilicity scale resulted from the retention data
> LogP ${ }^{2}$, AvLogP and XLOGP have been appearing to be the most appropriate for chromatography

Thank you for your attention!

11

