AMD-HPTLC analysis of reaction products resulting from a thermal induced degradation of onion (Allium cepa L.) flavonols

Morten Rauser, Sascha Rohn*, Nadja Buchner, Gregor Driemel and Lothar W. Kroh

Technical University of Berlin, Institute of Food Technology and Food Chemistry, Department of Food Analysis, TIB 4/3-1, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany "Phone: +49 30 314 72 -806; Fax: -585; Email: Sascha.Rohn@TU-Berlin.DE; http://www.tu-berlin.de/~Imc/

Introduction

Plant phenolic compounds are an important constituent of the human diet. In recent years they have gained much attraction due to their antioxidative, antibacterial, and even anticarcinogenic $\mathsf{effects}^{\scriptscriptstyle [1]}.$ In this context onions are an interesting vegetable for research due to its high content of phenolic compounds and its widespread popularity^[2]. In comparison to other vegetables onions contain high levels of quercetin glycosides (mainly quercetin-3,4'-diglucoside and quercetin-4'-glucoside)^[3]. Only a few papers consider the impact of domestic processing (chopping, boiling, and frying) on the stability of the flavonoids

It was concluded that such a degradation may partially result from oxidation^[5], but the knowledge about the arising degradation products is still very limited.

The objective of the present study was to investigate the influence of a thermal treatment on the degradation of selected onion flavonoids.

Material and Methods

Onion samples and selected flavonoids were applied to thermal processes (cooking and roasting) under varying reaction parameters (temperature; oxidative conditions; pH-value). AMD-HPTLC was used to follow the changes during the thermal processing.

Sample preparation

- 1 a) Selected flavonoids (quercetin, quercetinglycosides)
- b) Onions (Centurio, Allium cepa L.) were cut, freeze-dried and ground.
- 2 a) Flavonoids were cooked/roasted (180°C) up to 60 minutes b) Onion samples were roasted at 180°C for 5 and 10 minutes.
- The flavonol profile was analyzed using HPTLC-AMD following an 3) extraction with 70% methanol and solid phase extraction as a cleanup step.

HPTLC parameters

development:	AMD II (CAMAG)		
plate:	Silicalgel 60; HPTLC; 20x10cm (Merck)		
application:	automatic TLC sampler III (CAMAG)		
volume:	20 µL		
solvents:	Solvent A: ethylacetic acid/water/formic acid (85:15:10) Solvent B: touluol/acetic acid (2:1)		
gradient:	5 step gradient		
	step 1 2 3 4 5	solvent A B B B B B	time [Min] 5 10 15 20 25
detection: T	C-Scanner III (CAMAG)		
wavelength: 3	25 nm (plant phenolic compounds)		

Results and Discussion

- Thermal treatment of flavonoids leads to a degradation to smaller substances or even to polymers (Figure 1-3).
- Cooking leads to a different result than roasting[7/8]
- Thermal treatments of the onion samples showed that the quercetin glycosides are degraded depending on roasting time and temperature, but especially depending on the flavonol profile (Figure 4).
- Roasting under model conditions showed that flavonoldiglycosides are degraded to their corresponding aglycones via with the respective monoglycosides as intermediates (Figure 5)[8]
- With regard to biovailability monoglucosides are highly bioavailable compared to the diglucosides and the aglykon¹⁹
- HPTLC is an exquisite technique to follow all the fractions formed, because Polymeric fractions might be discriminated during HPLC analysis.

5 min 10 mi

Figure 5. Reaction mechanism of the thermal degradation of (onion) quercetindiglucosides

<u>Conclusions</u>

It can be concluded that thermal processing leads to significant change of the flavonoid profile of flavonoid-rich food.

As the onion flavonol glycosides are degraded during thermal food processing, a flavonol profile consisting of a high amount of diglycosides seems to be advantageous during roasting.

The resulting intermediates and degradation products have a high bioavailability^[9,10] and a comparatively high antioxidative activity.

Different fertilization techniques may support increased formation of quercetin glycosides in onion.

- dderly, D., Eason, J. and I.J. Sims, Chem. **1992**; 40: 2379-2383. Food Chem. **1997**; 45: 590-595. **1998**; 46: 3497-3502. 103-113. 3229-3235.
- 2002; 15: 2006; 20:
- - Nutr. 2005; 81(1 Suppl): 230S-242S

