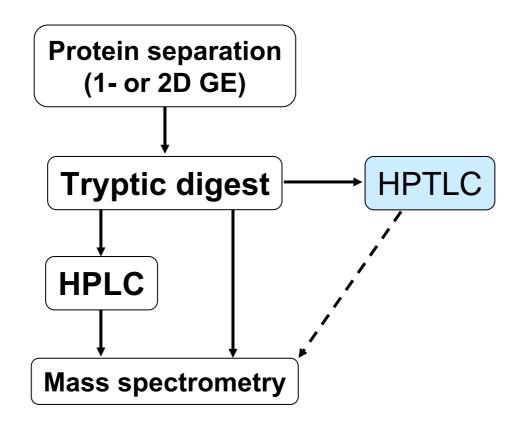


International Symposium for Thin Layer Chromatography

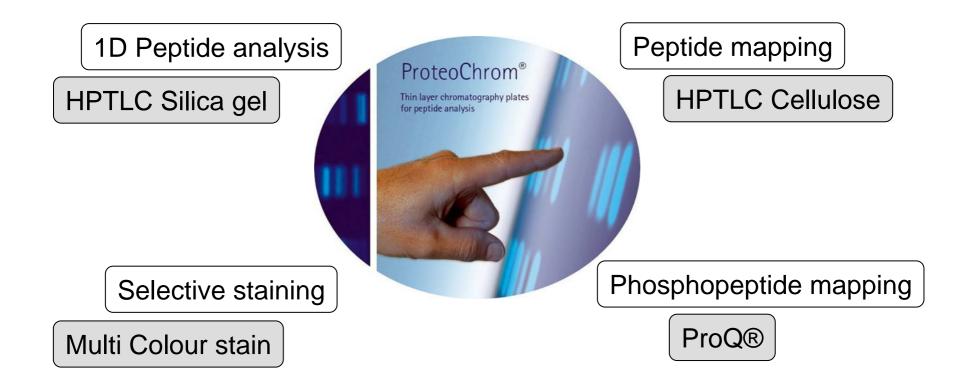
Berlin, 9th – 11th October 2006

HPTLC for the analysis of protein digests and peptides


Michael Schulz PLS R&D

- Vision
- Devices
- Stationary- and Mobile phases
- Classical peptide staining
- Multi Colour staining
- Phosphopeptide staining
- Conclusions

Vision


HPTLC for the analysis of protein MERCK digests and peptides Vision 1D Peptide analysis Peptide mapping **HPTLC**

Selective staining

Phosphopeptide mapping

Vision

Devices

Application	Development	Derivatisation	Documentation
15 15 15 15 15 15 15 15 15 15			am
			INEM Marries D.P.

Mobile- and stationary phases

One-dimensional	Two-dimensional				
ProteoChrom® HPTLC Silica gel 60 F254s	ProteoChrom® HPTLC Cellulose 2-butanol/acetic acid/pyridine/water				
2-butanol/ammonia/pyridine/water (39/10/34/26)					
ProteoChrom® HPTLC Cellulose	(30/6/20/24) 2-butanol/ammonia/pyridine/water				
2-butanol/acetic acid/pyridine/water (30/6/20/24)	(39/10/34/26)				

Mobile- and stationary phases Properties of ProteoChrom® layers

ProteoChrom® HPTLC Silica gel 60 F254s	ProteoChrom® HPTLC Cellulose	Benefit			
High performance Silica gel	High performance microcrystalline Cellulose	High separation efficiency			
Layer thickness 100 μm	Layer thickness 100 µm	High sensitivity			
Format 20 x 10 cm on glass	Format 10 x 10 cm on aluminium	Ideal Formats for one – or two dimensional separations			
Special binder composition	High layer density	Stability against water / high sample application volume			

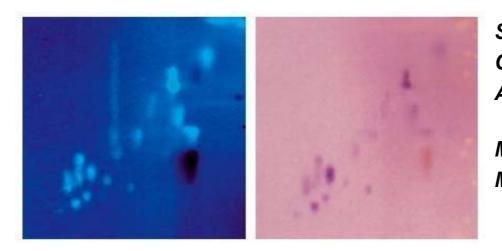
Classical peptide staining

Ninhydrin - Stain

Ninhydrin solution 2 minutes 110°C

Fluorescamin - Stain

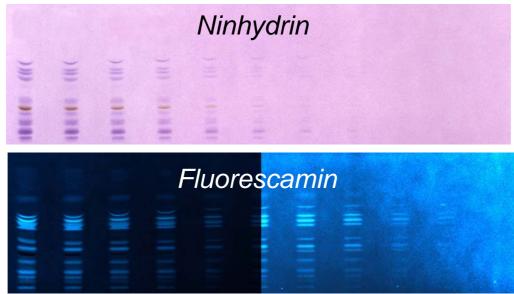
Fluorescamin solution 10 minutes at room temperature Triethylamine solution


Classical peptide staining on ProteoChrom® HPTLC Silica gel 60 F254s plates

Myoglobin	Cytochrome C	β-Casein	BSA	Myoglobin Cytochrome C	β-Casein	BSA	Sample volume:	1,5 µl, 4 µl
	_						Concentration:	2 mg/ml
				=			Application system:	ATS 4 (CAMAG)
=				= =			Migration distance:	5 cm
				= =	-		Migration time:	45 min

One- dimensional HPTLC of protein digests followed by Fluorescamin staining (left), or staining with ninhydrin (right)

Classical peptide staining on ProteoChrom® HPTLC Cellulose sheets


Sample volume:	5 μΙ
Concentration:	2 mg/ml
Application system:	Linomat V (CAMAG)
Migration distance:	5 cm
Migration time:	1st D: 45 min
	2nd D: 50 min

Two-dimensional HPTLC of the tryptic digest of Cytochrome C followed by Fluorescamin staining (left), or staining with ninhydrin (right)

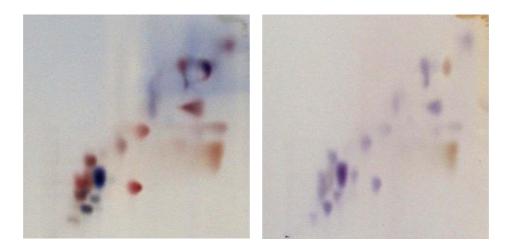
MERCK

Classical peptide staining Sensitivity on ProteoChrom® layers

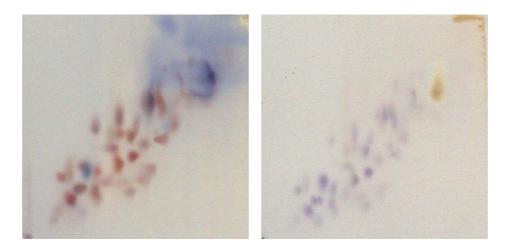
Concentration [mg / ml]	2	2	2	2	2	2	2	2	2	0,2	0,2
Application volume [µl]	5	4	3	2	1	0,7	0,5	0,3	0,1	0,5	0,1

Multi Colour staining on ProteoChrom® HPTLC Cellulose sheets

Multi Colour - Staining


Solution A 5 minutes room temperature Ninhydrin solution 2 minutes 110°C

MERCK

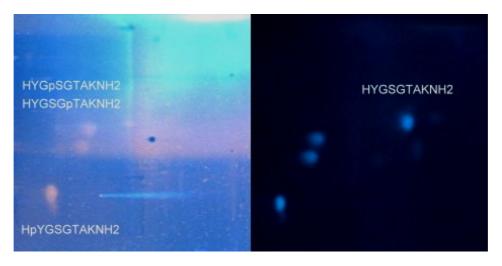

Multi Colour staining on ProteoChrom® HPTLC Cellulose sheets

Two-dimensional HPTLC of the tryptic digest of Cytochrome C followed by Multi Colour staining (left), and staining with ninhydrin (right)

Multi Colour staining on ProteoChrom® HPTLC Cellulose sheets

Two-dimensional HPTLC of the tryptic digest of BSA followed by Multi Colour staining (left), and staining with ninhydrin (right)

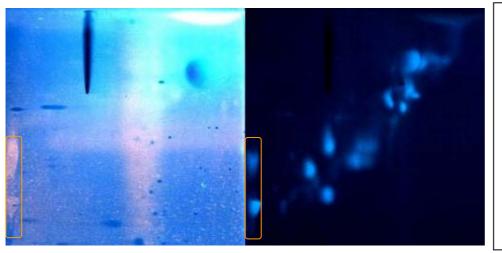
Phosphopeptide staining on ProteoChrom® HPTLC Cellulose sheets



Pro-Q® solution 45 seconds 70°C

Reagents used from Invitrogen Pro-Q® Phosphoprotein Blot Stain Kit (ProQ® reagent + buffer)

Phosphopeptide staining on ProteoChrom® HPTLC Cellulose sheets



Two-dimensional HPTLC of a peptide mixture

followed by

Pro-Q® staining (left), and staining with fluorescamin (right)

Phosphopeptide staining on ProteoChrom® HPTLC Cellulose sheets

Sequence of β-Casein MKVLILACLVALALAR ELEELNVPGEIVESLSSSEESITR INKKIEKFQSEEQQQTEDELQDK IHPFAQTQSLVYPFPGP IPNSLPQNIP PLTQTPVVVPPFLQPEVMGVSKVKEA MAPKHKEMPFPKYPVEPFTESQSLTL TDVENLHLLPLLQSWMHQPHQPLPPT VMFPPQSVLSLSQSKVLPVPQKAVPY PQRDMPIQAFLLYQE PVLGPVRGPFPIIV

⇒Two Phosphopeptides

Two-dimensional HPTLC of the tryptic digest of β-Casein followed by Pro-Q® staining (left), and staining with fluorescamin (right)

MERCK

Phosphopeptide staining on ProteoChrom® HPTLC Cellulose sheets

Two-dimensional HPTLC of the tryptic digest of Myoglobin followed by Pro-Q® staining (left), and staining with fluorescamin (right)

MERCK

- HPTLC can provide a complementary method to GE, HPLC and MS in the field of Proteomics
- HPTLC can close the gap between single amino acids and small peptides determinable in gel electrophoresis
- High sample number per run and high sensitivity on ProteoChrom® HPTLC Silica gel 60 F254 layers
- Two-dimensional peptide mapping on ProteoChrom® HPTLC Cellulose sheets
- Large variety of detection methods on ProteoChrom® layers

MFRCK