

THIN-LAYER CHROMATOGRAPHY OF LIPID FRACTION IN TREE NUTS SPECIES

PRESENTING AUTHOR:

GERARD PUJOL

gerard.pujols@estudiants.urv.cat

Nuts and their nutritional importance

- Nuts are defined as fruits with less than 50% of water.
- This definition involves Almonds, Cashews, Hazelnuts, Walnuts, Peanuts, Pistachios, Brazilnuts, Pine nuts and Pecans.
- Nut tree species are situated in very distant sites in vegetal Kingdom.

	Almonds	Cashews	Hazelnuts	Walnuts	Peanuts	Pistachios	Pine Nuts	Pecans
Order	Rosals	Sapinals	Fagals	Juglandals	Fagals	Sapinals	Coniferals	Juglandals
Gender	Prunus	Anacardium	Corylus	Juglans	Arachis	Pistacia	Pinus	Carya
Specie	Dulcis	Occidentale	Avelana	Regia	Hypogaea	Vera	Pinea	Illinoinensis

Nuts and their nutritional importance

- Nuts have a high portion of fat (45-75%), however Nuts are considered one important piece in healthy diets.
- Fat from Nuts have a degree of saturation near to ideal intake in humans.
- Their high portion of MUFA (mono unsaturated fatty acids) makes Nuts an excellent food to weight control and decrease cardiovascular risk.

Nuts and their nutritional importance

Nuts have also considerable amounts of many compounds involved in human wellness:

- Antioxidant Molecules
- Phitosterols

In processing plants Nuts go through severe transformation processes.

(heating, frying, etc...)

Lipid analysis in nuts

Lipids are a big cluster of compounds with a wide range of structures.

Lipids can be classified in two groups according to the presence/absence of fatty acids.

SAPONIFICABLES (With fatty acids)	UNSAPONIFICABLES (Without fatty acids)
PHOSPHOLIPIDS	PHITOSTEROLS
GLYCERIDES	

Lipids have two main roles in cells: source of energy and structural function in cell membranes.

Principal advantages of TLC and HPTLC

• Economy: Methods of thin layer chromatography are much cheaper than HPLC methods.

• Versatility: Same plates and same systems of revelation and quantification are valid for analysis of a wide range of lipid types.

• **Speed:** The property of TLC systems of carrying a large number of samples in one plate makes the time necessary for each sample minimum.

Samples Selection Selected samples are: Almonds, Hazelnuts, Chestnuts, Walnuts, Peanuts, Commercial homogenate of peanuts and Pistachios. Samples are purchased in BORGES SA and maintained under standard conditions before being analyzed.

Extraction of lipids in Nuts

Extraction about Folch method with modifications

LIPID EXTRACTION

Plate's and Sampling Selection

Plates used are MERCK made of Silica Gel 60F256

The sampling method selected was micro capillaries with holder of 2 il

First separation of Neutrals Lipids

SOLVENT SYSTEM: Two solvent system development: Hexane, TBME, Acetic Acid (70:30:2) ¹ Hexane ²

Neutral lipids of Nuts

- All samples have a similar pattern of Neutral lipids.
- Glycerides are the most abundant form of lipids in nuts.
- Some nuts (Comercial homogenate of Peanut, Almond and Hazelnut) have a higher proportion of free fatty acids.

Ch: Chestnuts Hz: Hazelnuts Hc: Commercial homogenate of Peanut Al: Almond Wl: Walnut Pn: Peanut Ps: Pistachio

Phospolipid separation

SOLVENT SYSTEM: Hexane, TBME, Acetic Acid (70:30:2)

Phospolipids in Nuts

•Phosphatidylethanolamines are the most abundant Phospholipid in nuts.

•Hazelnuts and Pistachios have less Phosphatidylcholines than the other analyzed nuts.

Ch: Chestnuts Hz: Hazelnuts Hc: Commercial homogenate of Peanut Al: Almond Wl: Walnut Pn: Peanut Ps: Pistachio

Glicerid separation

SOLVENT SYSTEM: Hexane, TBME, Acetic Acid (70:30:2)¹

Glicerid separation of Nuts

•The major components of glicerids in nuts are Triacylglicerols.

- Walnut has more 1-3 dyacilglicerols than other nuts.
- Peanuts and Pistachios are richer in Monoacylglicerols.

Ch: Chestnuts Hz: Hazelnuts Hc: Commercial homogenate of Peanut Al: Almond Wl: Walnut Pn: Peanut Ps: Pistachio

Sterol Separation

SOLVENT SYSTEM: Hexane, TBME, Acetic Acid (70:30:2)

Sterols in Nuts

Ch: Chestnuts Hz: Hazelnuts Hc: Commercial homogenate of Peanut Al: Almond Wl: Walnut Pn: Peanut Ps: Pistachio

in Campesterol.

What can HPTLC add to this study?

- More samples in a plate.
- Newest and more complex separations.

Conc	lusions
000-	

• TLC systems are valid methods to analyze lipidic patterns in nuts

• TLC methods provide enough resolution to if the previous extraction is clean of non-lipidic components.

• HPTLC can be a good option to improve this type of analysis.

The Group of Research

Collaboration among University Rovira i Virgili 💯 & Borges 🕬

Josep Orellana.

Nicolás Rozés.

Antoni Romeu.

Joan Ramón Duran.

gerard.pujols@estudiants.urv.cat