Comparative studies on analyses of total human epidermal lipids by HPTLC with and without prior separation of lipid classes on LC-NH2 columns

Iuliana Popa and Jacques Portoukalian

Laboratory of Dermatological Research, University of Lyon I,

Edouard Herriot Hospital, Lyon 69437 Cx 03, France

e-mail:popa@lyon.inserm.fr

Basic methods of extraction with chloroform-methanol followed by partition with water to remove hydrophilic contaminants

■ Folch, J., Lees, M. and Sloane-Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. <u>Summary</u>: 1 g tissue homogenized in 20 ml of chloroform- methanol 2:1 for a 10 min. before filtration, then addition to the filtrate of 0.2 volume of salts solution and thorough shaking. The mixture is centrifuged to yield a biphasic system with lipids in the organic phase.

J. Biol. Chem. 1957, 226 : 497-509.

Bligh, E.G. and Dyer, W.J. A rapid method of total lipid extraction and purification.

<u>Summary</u>: 100 g tissues homogenized in 100 ml chloroform+ 200 ml methanol for 2 min., then addition of 100 ml chloroform +100 ml water for 1 min. before filtration. This yields a biphasic system with lipids in the chloroform layer.

Can. J. Biochem. Physiol. 1959, 37: 911-917.

The first method is more suitable for extraction of lipids from fat-rich tissues.

The second one can be applied to tissues containing less than 1% lipids.

Additional problems of purification occurred with the discovery in the 60's of hydrophilic glycolipids that are found in the aqueous layer of the biphasic system.

The first investigators used dialysis to remove salts and sugars from the aqueous layer followed by lyophilization and chromatographic analysis of the lipid residue.

□ Later, reverse-phase chromatography on C18-bonded silica gel was used to recover the lipids from aqueous solutions.

(Williams MA and McCluer RH, J.Neurochem.1980,35:266-269.)

Thin-layer analysis of total lipids versus isolated lipid fractions

Total lipids

First approach to lipid fractionation

HPTLC plate of NSL isolated from cultured rat RMC(lane 1), pig retina (lane 2) and rat brain (lane 3). About 3µg lipid P was spotted by lane. Standards were run on lane 4 (CER, CMH and SULF) and 5 (FFA and SM (at the origin)). Sequetial migration in: -chloroform-methanol-water 95:20:2 (V/V/V) -hexane- diethylether-acetic acid 80:20:2 v/v/v FFA, CER and CMH were well separated.

Dreyfus H. et al. Anal. Biochem. 1997, 249:67-78

TLC (10 cm height) of total keratinocyte lipids Sequential migration in :

- chloroform-acetone-methanol 76:4:20 (1 cm)
- chloroform-acetone-methanol 80:10:10 (7,5 cm)
- chloroform-diethyl ether-ethyl acetate-methanol 76:6:20:2 (9 cm).

Ponec M. et al. J. Lipid Res. 1988, 29:949-961

Global procedure of lipid purification

Sequential elution of lipids into 6 fractions from LC-NH2 columns (Supelco*)

F1 diethylether

F2 chloroform-methanol 23:1 v/v

F3 diisopropylether-acetic acid 98:4 v/v

F4 acetone-methanol 9:1.2 v/v

F5 chloroform-methanol 2:1 v/v

F6 potassium acetate 0.2 M in methanol

*These solvents do not give satisfactory results using

LC-NH2 columns from other suppliers.

HPTLC analysis of the lipid fractions separated on LC-NH2 columns

Fractions eluted from	Solvent system for TLC	Spray reagents for
LC-NH2 columns	development	visualization of the TLC
F1 Free cholesterol,	Hexane/diethylether/acetic	Cu acetate 3 % in H3PO4 8%
diglycerides, triglycerides,	acid 70:30:1 (v/v/v)	reagent
cholesterol esters		
F2 Free ceramides and	Chloroform/methanol 50:4	Cu acetate 3 % in H3PO4 8%
monoglycerides	(v/v)	reagent
F3 Free fatty acids	Hexane/ diethyl ether/acetic	Cu acetate 3 % in H3PO4 8%
Free hydroxy fatty acids	acid 70:30:1 (v/v/v)	reagent
F4 Neutral glycolipids	Chloroform/methanol/water	Orcinol –H2SO4 reagent
Free sphingoid bases	65:25:4 (v/v/v)	Ninhydrin reagent
F5 Neutral phospholipids	Chloroform/methanol/water	Dittmer and Lester reagent
	65:25:4 (v/v/v)	
F6 Acidic phospholipids	Chloroform/methanol/water	Dittmer and Lester reagent
gangliosides, sulfatides	65:25:4 (v/v/v)	Orcinol-H2SO4 reagent

Comparative migration of fraction 1 versus total lipids

One-dimensional TLC (10 cm height) of total keratinocytes lipids

Migration in chloroform-acetone-methanol 76:4:20 (1cm);

chloroform-acetone-methanol 80:10:10 (7,5 cm);

Chloroform-diethyl ether-ethyl acetatemethanol 76:6:20:2 (9 cm).

Ponec et al. J. Lipid Res. 1988

Cholestérol (Ch),diglycerides (DG), triglycérides(TG), cholestéryl-esters (CE) Migration in Hexane / diethyl ether / acetic acid 70:30:1 (by volume) Visualisation with copper acetate 3 % in H3PO4 8%

skin

keratinocytes

Comparative migration of fraction 2 versus total lipids

One-dimensional TLC (10 cm height) of total keratinocytes lipids

Migration in chloroform-acetone-methanol 76:4:20 (1cm); chloroform-acetone-methanol 80:10:10 (7,5 cm); Chloroform-diethyl ether-ethyl acetate-methanol 76:6:20:2 (9 cm). One-dimensional TLC of skin ceramides fraction Migration in chloroform-methanol 50:3 Visualisation with Cu acetate 3 % in H3PO4 8%, at 120°C

Ponec et al. J. Lipid Res. 1988

Comparative migration of fraction 4 versus total lipids

One-dimensional TLC (10 cm height) of total keratinocytes lipids

Migration in chloroform-acetone-methanol 76:4:20 (1cm); chloroform-acetone-methanol 80:10:10 (7,5 cm); Chloroform-diethyl ether-ethyl acetate-methanol 76:6:20:2 One-dimensional TLC n of skin neutral glycolipids Migration in chloroform—methanol-water 65:25:4 (V/V/V) Visualised in orcinol-H2SO4 reagent

Ponec et al. J. Lipid Res. 1988

(9 cm).

Comparative migration of fraction 5 versus total lipids

One-dimensional TLC (10 cm height) of total keratinocytes lipids

Migration in chloroform-acetone-methanol 76:4:20 (1cm); chloroform-acetone-methanol 80:10:10 (7,5 cm); Chloroform-diethyl ether-ethyl acetate-methanol 76:6:20:2 (9 cm).

Ponec et al. J. Lipid Res. 1988

One-dimensional TLC of F5- Neutral Phospholipids PC, PE and SM Migration in chloroform-acetone-methanol 65:25:4 (v/v/v) Visualised with Dittmer and Lester reagent

One-dimensional TLC (10 cm height) of total keratinocytes lipids Migration in chloroform-acetone-methanol 76:4:20 (1cm); chloroform-acetone-methanol 80:10:10 (7,5 cm); Chloroform-diethyl ether-ethyl acetate-methanol 76:6:20:2 (9 cm).

Ponec et al. J. Lipid Res. 1988

F6 acidic phospholipids PI, PS and cardiolipin (CL), sulphatides (sulph). Migrated in chloroform/methanol/water 65:25:4 (v/v/v)

HPTLC of total protein-bound lipids from human atopic skin

Macheleidt et al. J. Invest. Dermatol. 2002

Example of using HPTLC in identifying specific markers for atopic dermatitis in human skin

HPTLC Immunostaining

Migrate samples on 2 HPTLC plates \rightarrow Plate for visualisation with orcinol / H₂SO₄ reagent. Plate Dip in 0.4% PIBM (polyisobutyl methacrylate) in hexane for 30 sec.

Blocking with 1% BSA/PBS for 60 min at RT. Incubate the plate with 1st Ab or with the serum diluted in PBS at RT for 60 min. Wash the plate with **0.1%PBS** 3min×5times. Incubate the plate with biotinylated second antibody diluted in PBS at RT for 60 min Wash the plate with **PBS** several times. **Incubate the plate with the complex** streptavidin-peroxidase at RT for 60 min Wash the plate with PBS several times. **Incubate with 4-Chloronaphtol solution** to visualise the bound peroxidase in blue

Examples of Immuno-HPTLC

Epitopes reactive with antibodies may be shared by several antibody-reactive molecules

Methods of detection of a minor component with a specific antibody in a total ganglioside sample

ELISA

Detection of a molecule after adsorption to a plastic well

Advantage

many samples can be tested simultaneously

Problems

a component in low amount is difficult to detect in a mixture

if the reaction with the antibody is positive, the detected component is not visualized

Immuno-HPTLC

Detection of a molecule after migration of the sample on the HPTLC plate

Advantages

most components are separated by migration

the antibody-positive component is visualized

Problem

the amount of antibody to be used is much higher than with ELISA

Conclusions

□ The separation of total lipids into several fractions enriched in defined lipid classes has many advantages.

□ It allows the use of solvent systems specific for each class of lipids to obtain a much clearer picture upon migration on HPTLC.

■ It gives the possibility to visualize by chemical or serological means the minor components after concentration of the applied sample without the disturbance of migration on HPTLC plates that would result from the presence of major components in a total lipid sample.

It is a help for the investigators to use radioactive precursors to study lipid metabolism without overlapping weak radioactive spots by highly radioactive ones.

Thank you for your attention !

University of Lyon I

- J. Portoukalian
- I. Popa
- J. Chapman

Engelhard- France

N. Abdul-Malak