APPLICATION OF SUBAMBIENT AND ELEVATED TEMPERATURES

FOR TLC SEPARATION AND DETECTION PROTOCOLS

Paweł K. Zarzycki

Laboratory of Toxicology, Department of Environmental Biology Technical University of Koszalin, Śniadeckich 2, 75-453 Koszalin, Poland

www.wbiis.tu.koszalin.pl/labtox

Berlin 2006

1. BASIC THEORY

2. EQUIPMENT

3. APPLICATIONS

Giddings' equation

 $H = (C_{k} + C_{m2})u + 1/(1/A + 1/\Sigma C_{m1}u)$

- u linear velocity of the mobile phaseA eddy diffusion
- C_k mass transfer resistance resulting from sorption-desorption kinetics
- \mathbf{C}_{m1} mass transfer resistance in the mobile phase
- \mathbf{C}_{m2} mass transfer resistance in the mobile phase deposited in the particles of the packing material

Figure 41 Plate height (H) versus solvent migration distance (Z_f) comparison between silica gel HPTLC and TLC. Typically demonstrated with a chloroaniline $(R_f 0.35)$ as a standard and using toluene as the mobile phase. As the graph shows, at low Z_f (short development distances) improved resolution is observed for the HPTLC layers, but the effect diminishes with increased development distances

Source:

Peter E. Walls Thin-layer chromatography. A modern practical approach RSC, Cambridge, 2005; page 47.

Figure 1 - Separation of sweet (left track) and bitter orange oil (right track) on TLC and HPTLC plates. Development on the TLC plate (left) over 15 cm requires 45 min, separation over 5 cm on HPTLC material (right) is achieved in 7 min. Mobile phase: ethyl acetate, toluene (15:85 V/V), visualization at 366 nm after derivatisation with anisaldehyde reagent.

Modified from: Eike Reich, Anne Blatter and Beat Meier; "TLC for the Analysis of Herbal Drugs A Critical Review of the Status and Proposal for Improvement of Monographs"; Camag Scientific Note available online through Camag WebPages.

Fig. 2. Section drawing of the chamber unit.

Adapted from:

P. K. Zarzycki. "Simple chamber for temperature-controlled planar chromatography" J. Chromatogr. A, 971 (2002) 193-197.

Cholesterol

Fig. 3. Relationships between $\Sigma \Delta h R_F$ values and composition of mobile phases at different temperatures, obtained for mixtures consisting of eight steroids. 5°C (\bigcirc), 10°C (\bigcirc), 20°C (\bigtriangledown), 30°C (\bigtriangledown), 40°C (\square), 50°C (\blacksquare), 60°C (\triangle).

Fig. 4. Chromatographic separation of steroids at 5° C (A) and 50° C (B) using RP-18W plates and methanol–water (80:20, v/v) mobile phase. Spot numbers correspond to steroids numbers listed in Table 1.

Adapted from: P.K. Zarzycki, M. Wierzbowska, H. Lamparczyk; "Retention and separation studies of cholesterol and bile acids using thermostated thin-layer chromatography", *J. Chromatogr. A*, 857 (1999) 255-262.

Estrone; E1

Estriol; E3

(developing distance 10cm)

Adapted from P. K. Zarzycki, K. M. Kulhanek, R. Smith, M. A. Bartoszuk, H. Lamparczyk, "Planar Chromatography Versus Column Chromatography: A Performance Comparison"; *LCGC North America* 23 (2005) 286-300.

PGE₂

15-keto-PGE₂

PGEM

Adapted from:

T. Welsh, T. Zakar, S. Mesiano, P. K. Zarzycki; "Separation of Bioactive Prostaglandins and their Metabolites by Reversed-Phase Thin-Layer Chromatography", J. Planar Chromatogr., 16 (2003) 95-101.

α-Cyclodextrin (n=6)

β-Cyclodextrin (n=7)

γ-Cyclodextrin (n=8)

 $R = - OCH_3COOH$ RIFAMYCIN B

Fig. 2. Separation of studied macrocycles using methanol-water (50%, v/v) as mobile phase. The temperature of chromatographic process was 5 (A) and 50°C (B), respectively.

Fig. 3. Plots of R_M versus 1000/T for α - (\bigcirc), β - (\bigcirc), and γ -cyclodextrin (\bigtriangledown), rifamycin B (\triangledown) and rifampicin (\blacksquare). Mobile phase: methanol-water (50%, v/v).

Adapted from:

P. K. Zarzycki, J. Nowakowska, A. Chmielewska, M. Wierzbowska, H. Lamparczyk, "Thermodynamic study of retention of selected macrocycles using RP-HPTLC plates and methanol/water mobile phases", *J. Chromatogr A.*, 787 (1997) 227-233.

Fig. 4. Plot of enthalpy–entropy compensation for α -CD (O), β -CD (\oplus), γ -CD (∇), rifamycin B (∇) and rifampicin (\blacksquare).

Adapted from P.K. Zarzycki, M. Wierzbowska, J. Nowakowska, A. Chmielewska, H. Lamparczyk; "Interactions between native cyclodextrins and *n*-alcohols studied using thermostated thin-layer chromatography", *J. Chromatogr. A*, 839 (1999) 149-156.

Common applications of the phosphomolybdic acid as the main component of the detection mixtures in planar chromatography.

Class of compounds	Ref.	PMA concentration	Temperature	Stationary phase	
Lipids	[19]	5% in methanol	115°C for 15 min	Silica HPTLC	
Neutral lipids and	[20]	5% in ethanol	110-120°C for 5-10 min	Silica HPTLC	
cholesterol					
Cholesterol esters	[21]	10% in ethanol	100°C for 2 min	Silica HPTLC	
Bile acids and cholesterol	[22]	10% in 2-propanol	120°C for 5-10 min.	HPTLC RP18W	
Conjugated bile acids	[23]	3.5% in ethanol	70-80°C for 10 min.	Silica HPTLC	
Saponins	[24]	5% in ethanol	110°C	Silica TLC	
Prostaglandins	[24]	10% in ethanol	110°C for 3-6 min.	HPTLC RP18W	
Peroxides and ketodienes	[26]	5% in ethanol	110°C	Silica TLC	
from linoleic acid					
Olive oil components	[27]	20% in water	175°C for 60 min.	AgNO ₃ impregnated	
				silica TLC	
Mammalian feces	[28]	5% in ethanol	120°C for 20 min.	Silica TLC	
Aminophospholipids	[29]	5% in ethanol	60°C for 5 min.	Silica TLC	
Triacylglycerols and	[30]	5% in ethanol	110°C for 10 min.	Silica HPTLC	
phospholipids					
Terpenes	[31]	20% in ethanol	105°C for 15 min.	Silica TLC	
Sesquiterpene lactones	[32]	10% in ethanol	100°C for 2 min	Silica OPTLC	
Common sterols	[33]	10% in methanol or	110°C for 10 min.	Whatman No1 filter	
		ethanol		paper	

Adapted from P.K. Zarzycki, M. A. Bartoszuk, A. I. Radziwon, "Optimization of TLC Detection by Phosphomolybdic Acid Staining for Robust Quantification of Cholesterol and Bile Acids", J. Planar Chromatogr., 19 (2006) 52-57.

Taurodeoxycholic Acid RP18

Temperature [°C]

CONCLUSION

For particular applications temperaturecontrolled planar chromatography shows potential to kick it's column counterpart out of the lime light.

APPLICATION OF SUBAMBIENT AND ELEVATED TEMPERATURES

FOR TLC SEPARATION AND DETECTION PROTOCOLS

Paweł K. Zarzycki

Laboratory of Toxicology, Department of Environmental Biology Technical University of Koszalin, Śniadeckich 2, 75-453 Koszalin, Poland

www.wbiis.tu.koszalin.pl/labtox

Berlin 2006

α -CYCLODEXTRIN

4-tert-BUTYLOKALIX[5]ARENE

Stationary Phase: C-18

Chromatographic retention profiles of cyclodextrins

under reversed-phase conditions

Stationary Phase: C-18 (HPTLC RP18W)

	CD concentration/mM									
	0	0.1	1	5	10	50	100			
Acetonitrile/Water										
β -Cyclodextrin	-10.08	-10.09	-10.09	-10.10	NA	NA	NA			
	(± 0.01)	(±0.01)	(±0.01)	(±0.01)						
2-Hydroxypropyl-β-CD	-10.08	-10.07	-10.06	-10.08	-10.12	-10.295	-10.532			
	(± 0.01)	(± 0.05)	(± 0.04)	(±0.02)	(±0.03)	(±0.007)	(±0.005)			
Methanol/Water										
β -Cyclodextrin	-23.4	-24.3	-23.6	NA	NA	NA	NA			
	(±0.5)	(± 0.4)	(± 0.8)							
2-Hydroxypropyl-β-CD	-23.4	-24.3	-23.8	-23.6	-23.3	-24.0	-25.0			
	(±0.5)	(±0.2)	(±0.7)	(±0.7)	(±0.2)	(±0.6)	(±0.4)			

Table 2 Freezing temperatures (°C) of acetonitrile/water (35.6%, v/v) and methanol/water (30.0%, v/v) binary mobile phases unmodified and modified with β -cyclodextrin and 2-hydroxypropyl- β -cyclodextrin

NA: Non available. The numbers in parentheses correspond to the standard deviation values; number of samples, 5.

Selectivity
$$\alpha = k_2/k_1$$

Resolution
$$R_{\rm s} = (t_{\rm R2} - t_{\rm R1})/[(w_{\rm B1} - w_{\rm B2})/2]$$

Relative Resolution Product $r = \frac{\prod_{i=1}^{n-1} R_{S_{i+1,i}}}{\left[\left(\sum_{i=1}^{n-1} R_{S_{i+1,i}}\right) / (n-1)\right]^{n-1}}$

Fig. 1. Relationships between R_F values of α - (A), β - (B), and γ -cyclodextrin (C), rifamycin B (D) and rifampicin (E) versus different mobile-phase compositions and reciprocal of absolute temperature.

Adapted from:

P. K. Zarzycki, J. Nowakowska, A. Chmielewska, M. Wierzbowska, H. Lamparczyk, "Thermodynamic study of retention of selected macrocycles using RP-HPTLC plates and methanol/water mobile phases", *J. Chromatogr A.*, 787 (1997) 227-233.

K60W

RP18W

Contribution of separation techniques for quantification, impurity tests and substance identification protocols used in European Pharmacopoeia monographs

