From Modeling Separations to Estimation of Biopartitioning Properties: Use of the Solvation Parameter Model in Thin-Layer Chromatography

Professor Colin F. Poole Wayne State University USA

Solvation Parameter Model

SP = C + eE + sS + aA + bB + w

HBA
HBB

Solute Descriptors

- V is McGowan's Characteristic Volume
- E is the excess molar refraction
- S is the solute dipolarity/polarizability
- A is the effective solute hydrogenbond acidity
- B is the effective solute hydrogenbond basicity

Free Energy Related Property

- For TLC this is the R_M Value
- For GC and LC this is log K or log k
- For condensed phase distribution systems this is log K
- For gas to condensed phase systems this is Log L

 $R_{M} = log (1 - R_{F}) / R_{F}$

System Maps

Solvent Methanol 2-Propanol Trifluoroethanol Acetonitrile Tetrahydrofuran Acetone Dimethylformamide Pyridine

Stationary Phase Octadecylsiloxane Cyanopropylsiloxane Diol (few systems) Basic TEA DMF Pyridine THE ISP . -Dioxane Acetone MeOH • Water • ACN Acidic Dipolar TFE

Separation of Analgesics

 $1^{2} \bigwedge^{3} 4 56$

	R _F Val	ues
	Predict	ed Experimental
2,2,2-trifluoroethan	nol-water ((3:7)
Ibuprofen	0.06	0.06 ± 0.01
Naproxen	0.09	0.12 ± 0.03
Phenacetin	0.20	0.19 ± 0.02
Caffeine	0.30	0.30 ± 0.01
Asprin	0.40	0.46 ± 0.05
Acetaminophen	0.64	0.63 ± 0.01

Separation of Phenols

Mobile Phase 70% Methanol 50% Trifluoroethanol 50% Dimethylformamide 50% Acetonitrile

Stationary Phase: Cyanopropylsiloxane Sample: Pentachlorophenol, 2,4,6-Trichlorophenol, 4-Nitrophenol, and Catechol

Calculation of Solute Descriptors

Compound = Ephedrine

- V = 1.4385SD = 0.083E = 0.920Ν = 12
- Solver used to solve simultaneous set of S = 0.65A = 0.20
 - equations by changing descriptor values
- B = 1.24to minimize ΔR_{M}

 $\Delta R_{M} = R_{M}$ observed $- R_{M}$ predicted

System vesabc
$$(\Delta R_M)^2$$
12.210-0.17-0.33-1.24-0.820.01221.520.4100-1.92-0.570.0583etc.

Surrogate Models

Similarity of sorption properties is established by comparison of the capacity of the system for all solute-solvent interactions measured and defined in the same way

Emulation

⇒The system constants should be (nearly) identical

Correlation

⇒The ratio of the system constants (usually normalized by division by *v*) should be the same (or nearly the same) for both processes

$$\log K_2 = p \log K_1 + q$$

Lipophilicity

e/v s/v b/v a/v V 3.81 0.15 -0.28 0.01 -0.91 Log P_{OW} 60% DMF 0.80 0.26 -0.18 0 -0.84-0.06 -0.12 -0.74 20% ISP 2.84 0 20% Pyridine 1.97 0 -0.15 0 -0.80 Stationary Phase RP-18WF Best model is 30-60% Dimethylformamide No Good TLC Models for Lipophilicity

SYSTEM CONSTANTS DATABASES

Biopartitioning

- Intestinal Absorption
- Blood-Brain Distribution
- Water-Skin Distribution
- Soil-Water Distribution
- Plant Cuticle Matrix-Water Distribution
- Non-Specific Toxicity to Fish and Bacteria
- Nasal Pungency
- Eye Irritation

There are no useful models in the TLC system constants database for

Intestinal Absorption Blood-Brain Distribution Soil-Water Distribution Plant Cuticle Matrix-Water Distribution

There are suitable models in the TLC database to estimate non-specific toxicity

- Fathead Minnow
- Gupy
- Tadpole

Tetrahymena pyriformis (Tetratox test)

Fathead Minnow LD₅₀ v e/v s/v a/v b/v Fish 3.39 0.07 0 0.12 -1.08 TLC 1.32 0 0 0.13 -1.00 Stationary Phase RP-18WF Mobile Phase 10-40% Pyridine

Microtox Test e/v s/v a/v b/v V 2.88 0.22 0 0 -0.87 Microtox TLC 2.31 0.17 0 -0.87 \mathbf{O} Stationary Phase CN Mobile Phase 10-35 % 2-Propanol (best) 5-20 % Acetonitrile (good) 10-20 % Methanol (useful)

Non-specific Toxicity: Guppy

Alternative

- Use TLC to estimate solute descriptors for use in any of the biopartitioning models.
- Allows TLC data to be used in a broader sense to estimate biopartitioning properties
- Unlike for correlation models a standard set of TLC systems suffices to estimate correlation models

Inorganic Oxides

Simultaneous contribution of solute and solvent interactions with the adsorbent folded into the R_M value

The heterogeneous energy distribution of sites) and steric requirements (fixed position of sites) conceptually not accommodated by the model

Inorganic Oxides

The solute term ($\epsilon^{\circ}A_{S}$) and solute term (*S*) of the simple competition model can be modeled independently and successfully

The definitions of *S* and A_S are difficult to reconcile with their predicted properties

The simple competition model ignores contributions from solute-solvent interactions in the mobile phase

Inorganic Oxides

Solvent strength parameter for silica gel

 ϵ° = -0.264V + 0.199S + 0.384A + 0.355 B + 0.272

Can be used to estimate ϵ° values to about 0.04 units for solvents lacking experimental values