

Planar Chromatography

Which TLC system?

Overview of detection

- Commonly used detection methods
- ✓ Pre- and postchromatographic derivatization
- ✓ Universal and group characterizing reagents
- ✓ Derivatization sensitivity of reagents
- ✓ Derivatization techniques
- ✓ Microchemical and microbiological detection
- ✓ Absorbance scan
- ✓ Fluorescence scan
- ✓ Multi-wavelength scan
- ✓ Multiple detection
- ✓ Spectra recording and library search

Allergenic disperse dyes in textiles

A. Bonhoff et al., STR Testing & Inspection AG, Steinach, Switzerland, optimized at CAMAG Lab, see CBS 82

Aflatoxins in foodstuffs

CAMAG Laboratory Application Note 12.4

Commonly used in situ detections

Physical detection

- Optomechanical scan
- Video densitometry
- Further techniques
- ✓ Absorbance UV/VIS
- ✓ "Fluorescence quenching"
- ✓ Fluorescence
- Autoradiography etc.

Microchemical detection

- Prechromatographic derivatization
- Postchromatographic derivatization
- Universal reagents
- Group characterizing reagents

Microbiological & biochemical detection

- Bioautography
- Enzyme-substratereaction

Note: By derivatization in situ all samples are derivatized simultaneously!

Prechrom. derivatization during sample preparation

Derivatization with 2,4-Dinitrophenylhydrazin, see CBS 66

Prechromatographic derivatization in situ

What ate our forefathers? Fatty acids in archaelogical artifacts

P. Jones, Time Team & CAMAG Team at Food Science Research Laboratory, University of Bournemouth, GB, see CBS 85

Prechromatographic derivatization

Advantages

- Enabling the chromatographic separation at all
- Increase in stability of substances to be separated
- Decrease of reactivity of substances with stationary phase, decrease of strong polarities
- Transfer to not volatile derivatives
- No increase of background by reagents in excess because these can still be removed
- Derivatization in vessel: improved extraction efficacy by changing substance properties

Prechromatographic derivatization

Disadvantages

- Reagent influences other sample and matrix constituents
- Chromatographic properties of different sample constituents can be equalized by formation of great molecule groups
- Varying sample and matrix composition influences quantitative derivatization

K. Raith et al., University of Halle, see CBS 90

Postchromatographic derivatization in situ

Advantages

- No influence on separation
- Optimal reaction kinetics at different substance concentrations (reaction of substances, not solutions)
- Reaction under identical conditions
- Additional confirmation of results

Disadvantages

- Interference by absorption or fluorescence of reagents in excess
- Technical difficulties

Microchemical derivatization

Examples for universal reagents

- Carbonizing with acids
- Aldehyde/acid reactions
- Molybdato phosphoric acid
- Iodine or bromine vapors
- Examples for group characterizing reagents
- Ninhydrin
- Diazotization
- Hydrazine derivatives
- Dansylation

Jork, H., Funk, W., Fischer, W., Wimmer, H.: Thin-Layer Chromatography, volume 1a and 1b, VCH, Weinheim, 1989 and 1993.

G. Lodi et al., University of Ferrara, Italy, see CBS 84

Monitoring of Maillard reaction

Derivatization - sensitivity of reagents

Jork, H., Funk, W., Fischer, W., Wimmer, H.: Thin-Layer Chromatography, volume 1a and b, VCH Weinheim 1990 and 1994.

Derivatization techniques

Spraying scheme

Microbiological detection of antibiotics

C. Weins, Staatl. Inst. für Gesundheit und Umwelt, Saarbrücken

Merck Bioautographic Test Kit "Chrom Biodip[®]", see CBS 85

Microbiological detection of toxic compounds

W. Kreiss et al., Bayer AG, Chroma Dex Test Kit "BiolumineX", see CBS 88

Microbiological detection of saponins

Hahn-Deinstrop, E.: Applied Thin-Layer Chromatography. Best practice and avoidance of mistakes, 2000, Wiley-VCH, Weinheim, ISBN 3527-298398.

Biochemical detection

Enzymes	used for
Peroxidase	 quinones
Urease, amylase	 heavy metals, metal containing fungicides
Trypsin, chymotrypsin, cholinesterase	 organo phosphates, carbamates, pentachlorphenol

•

Biochemical detection of cholinesterase inhibitors

C. Weins, Staatl. Inst. für Gesundheit und Umwelt, Saarbrücken

Biochemical detection of photosynthesis inhibitors

klaus.burger@mail.isis.de

Scanning

UV, VIS, Fluorescence

- Absorbance scan
- Fluorescence scan
- Multi-wavelength scan
- Multiple detection
- Spectra recording and library search

Absorbance

in solution (transmission)

Kubelka Munk function

$$F(R_{\infty}) = \frac{k}{s} = \frac{(1 - R_{\infty})^2}{2 R_{\infty}}$$
Preconditions:
$$d = \infty$$

$$R_0 = 0$$
no direct reflexion
$$dp < 1 \text{ mm}$$

Emission spectra of the lamps

Scanner validation

	SC3_Serv - D:\CAMAG\winCATS\Scanner3-01051	5\20001	024.Q5c3			J	<u>_ ×</u>
ľ	- 14 🗣 🖉 🕾 🖬 🖬 📔			7	18.0	186.6	* *
	Qualification TLC Scanner 3	unit	lower limit	upper limit	detected	status	
	Basic electronics test						
	Measuring electronics self diagnosis					passed	
	Dark signal : main channel	mΥ	0.01	4.50	2.82	passed	
	Dark signal : ref channel	mV	0.01	4.50	1.99	passed	
	PM match test : gain		15	45	33	passed	
	PM match test : high voltage	\vee	300	650	432	passed	
	Tungsten halogen lamp tests						
	Relative intensity	%	50.0	120.0	78.2	passed	
	Output stability	%	0.00	0.25	0.07	passed	
	Lateral adjustment	mm	10.13	10.33	10.23	passed	
	Slit illumination : Uniformity	%	90.0	100.0		running	
	Deuterium lamp tests						
	Relative intensity	%	50.0	120.0		not done	
	Output stability	%	0.00	0.25		not done	
	Lateral adjustment	mm	0.00	0.00		not done	
	Slit illumination : Uniformity	%	90.0	100.0		not done	
	Mercury vapor lamp tests						
	Relative intensity	%	50.0	120.0		not done	
	Output stability	%	0.00	0.25		not done	
	Lateral adjustment	mm	0.00	0.00		not done	
	Slit illumination : Uniformity	%	90.0	100.0		not done	
	Monochromator tests						
	Mercury line	nm	312.0	314.0		not done	
	Mercury line	nm	364.5	366.5		not done	
	Mercury line	nm	434.8	436.8		not done	
	Mercury line	nm	545.0	547.0		not done	
	Mercury line	nm	577.0	579.0		not done	
	Backlash : effective deviation	nm	0.00	1.00		not done	
◀							Þ
A	djusting PM						//

Slit scan

- Resolution increases with
 - number of datapoints (smaller micro steps)
 - decreasing width of slit but less intense signal
- Slit dimension
 - Slit length <--->
 - bands 50 70 %
 - spots 120 %

Slit width

the higher, the better light intensity, but the worse resolution

Fluorescence

- Substances with fixed molecular structure
- Fluorophore
- ✓ Aromatic systems
- Compounds with conjugated double bonds
- ✓ Carbonyls
- Condensated heterocycles

Fluorescence

Linear correlation between fluorescence intensity and concentration:

substance & instrument factor

Preconditions

- strict monochromatism of the exciting light
- low concentration level

Advantages

- high sensitivity (pg-range)
- high selectivity
- wide linear concentration range

Types of fluorescence filter

Selectivity by ideal excitation and filter combination

Jork, H., Funk, W., Fischer, W., Wimmer, H.: Thin-Layer Chromatography, volume 1a and b, VCH Weinheim 1990 and 1994.

Multi-wavelength scan

Multi-wavelength scan

klaus.burger@mail.isis.de

Multiple detection

Multiple detection

Spectra recording

$$\lambda_{\text{Sample corr.}} = \lambda_{\text{Sample}} - \lambda_{\text{Lamp}} - \lambda_{\text{Background}}$$

Difference to spectra in solution

- no solvent
- adsorbed on the layer

Note: Compare spectra at similar concentrations!

Spectra recording

Spectra calculation

Spectra library

Calculation of hR_F^c

Overview of quantification

✓ Calibration

- ✓ Dual wavelength scan
- ✓ Track optimization
- ✓ Videoscanning or conventional scanners
- \checkmark Validation
- ✓ GLP

Calibration

- start with limit of quantification LOQ
- use external standard
- 1. Single standard calibration
- only 1 standard level
- Inear function through standard level and origin
- Precondition: first use linear regression to determine the permitted deviation in %
- analyte concentration around the standard level
- more tracks of analytes on one plate!

Single standard calibration

Calibration

Multi level calibration

- permitted deviation 0 % (within the calibration function)
- at least 5 standard levels (DIN 38 402 part 52)

2. Linear calibration function y = ax + b

- narrow concentration range (1:10)
- generally by fluorescence measurement

3. Polynomial function $y = ax^2 + bx + c$

wide concentration range (1:100)

Polynomial regression

Calibration

4. Michaelis Menten 1 $y = (a_1 \cdot x)/(a_2 + x)$

- saturation curve
- through origin
- wide concentration range (1:100)
- high concentrations

5. Michaelis Menten 2 $y = a_0 + (a_1 \cdot x)/(a_2 + x)$

- like MM 1, but
- not through origin

Vanilla bean extracts

S. Lavoine et al., Studio de Creation de Parfumerie, Mourgins cedex and Biolandes, Labrit, France, see CBS 81

Modes of dualwavelength scan

2 Wavelengths on the same track

- successively via 1 monochromator
- wavelength of maximum absorbance minus wavelength of minimum absorbance

Scan of 2 tracks with the same wavelength

 sample track minus blank track (between two sample tracks)

Dualwavelength scan

Track optimization

Note: Only for spotwise application

Videoscanning or conventional scanners?

Image documentation

馢 winCATS - [demojm.cna]		_ 8 ×
📴 Eile Instruments Run Administration View Iools 🛛	indow <u>H</u> elp	_ 8 ×
	N?	
Sample application - Linomat 5		
Development - Chamber		
E Retection - Scanner 3		
		_
□ □ □ 229 nm		
🕂 🛄 230 nm		
🛨 🛄 247 nm		
🛨 🚺 274 nm		
🛨 🛄 277 nm		
🛨 🕂 🚻 447 nm		
😟 - 🛄 499 nm		
🕀 📊 543 nm		
🕀 📊 632 nm		
🛨 📶 300 nm		
🛨 📶 340 nm		
😟 💮 📶 380 nm		
🛨 – 🛄 420 nm		
🛨 📶 460 nm	-0.6-	
🕀 🖳 500 nm	-0.5 -	
主 - 🛄 540 nm		
主 🛄 580 nm	0.3-	
🚹 🕕 📶 620 nm		
😟 🕀 🚻 660 nm	-0.1- Rf is: 0.26	
😟 🕀 🚻 700 nm		
Evaluation - Screening		
📩 👘 Documentation		
Image document Image1		
Image document Image2		
TLC Steps		
·		
For HELP, press F1	V1.2.2 0713W006 Jan Masthoff	NUM

Histamine in fish and fish products

All at one glance and click!

M. Stoyke, IVPT, Berlin, see CBS 83

Videoscanning or conventional scanners?

VideoScan

- very fast
- less costs
- image documentation and its quantification
- but...

TLC Scanner3

- optimal reproducibility
- the whole UV-range
- spectral selectivity
- spectra recording

Validation

 official qualification of an analytical method showing that it fulfills the intended purpose

Prerequisites

- ✓ characterized, homogeneous sample
- ✓ exact formal analytical method
- characterized reference substances
 (stability tested, of known purity and origin)
- ✓ validated instruments (IQ, OQ, PQ)
- ✓ statements concerning tolerated values & deviations, limit values, purpose of the procedure

Parameters of validation

1. Specifity

Differentiate specifically the impurities, degradation products, byproducts etc. from the analyte Note: R_F value, chromatogram & spectra comparison, blank sample, standard addition, ruggedness tests

2. Selectivity

Differentiate selectively the impurities, degradation products, byproducts etc. from the analyte Note: R_F value, resolution, peak asymmetry, spectra purity

3. "Linearity" or better analysis function

Functional correlation between measured value and concentration Note: Sdv, linearity test acc. to Mandel

Resolution according to Snyder

$$R_{s} = \frac{1}{4} \left(\frac{K_{1}}{K_{2}} - 1 \right) * \sqrt{R_{F}} * N * (1 - \overline{R_{F}})$$

$$\alpha \qquad \beta \qquad \gamma$$

$$\alpha \qquad \beta \qquad \gamma$$

$$\alpha \qquad Selectivity term
$$\beta \qquad Laver quality \qquad N = \frac{Z_{F}}{H}$$$$

- γ Solvent influence
- \overline{R}_{F} Mean R_{F} value of the substances to be separated
- N Number of theoretical plates of a given plate (mean)
- <u>Z</u>_F Migration distance H Height Equivalent
- H Height Equivalent to a Theoretical Plate, HETP (mean)

Selectivity of great influence: $R_s \sim \alpha$ Migration distance of slight influence: $R_s \sim \sqrt{N_i}$

Resolution

R_S

Difference of migration distances

$$2(z_{F_1} - z_{F_2})$$

 $W_1 + W_2$ Sum of the peak widths on the basis/2

 z_{F_1}, z_{F_2} Migration distance w_1, w_2 Peak width on the basis

✓ Different K-values, i.e. different slopes of the isotherms, selectivity
 ✓ Work in the linear range of the isotherms (decrease concentration)
 ✓ Optimal migration distance - just as high as necessary to avoid increased diffusion

Parameters of validation

4. Sensitivity

Change of concentration per change of signal, reliability of the results Note: Slope of the function

5. Working range

Calibration range in which quantitative statements are allowed

Note: Starting at the limit of quantification, variances-F-test

6. Limit of quantification (LOQ)

Concentration, at which a substance can be quantitatively evaluated and is statistically significant different from zero

= 2-3 fold detection limit (LOD)

- = concentration, at which a substance can be detected
- = 3 fold noise signal (= variation of the baseline)

Limit of detection and quantification

Limit of detection and quantification

Parameters of validation

7. Trueness ("Accuracy" = systematic & random errors)

True result of an analysis

Note: Systematic errors... recovery rate, recovery function with and without matrix (difference in slope and intercept with the yaxis, variances-F-test)

8. Precision

Deviation of the results

Note: Random errors.... sdv, coefficient of variation, confidence interval

- repeatability (same day/person/instruments)
- intermediate precision or reproducibility (different days/persons/instruments)

Precision good, but trueness poor!

Errors

Systematic errors

- Trueness, constant and/or varying
- Characterization by interception with y-axis

Random errors

- Reproducibility, precision
- Characterization by standard deviation

$$s_{x} = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n}} \rightarrow s = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}}$$

Sources of random errors

Total error or reproducibility: < 2-3 %

$$x_T^2 = x_A^2 + x_{PO}^2 + x_C^2 + x_{PL}^2 + x_M^2$$

 x_{T} total error x_{A} application error x_{PO} positioning error $\begin{array}{ll} x_{C} & chromatography error \\ x_{PL} & plate error \\ x_{M} & measurement error \end{array}$

✓ Measure n-tracks with the same amount of substance

Measurement error: < 0,2 %

 Measure a given chromatogram track n-times (track distance: 0)
Sources of systematic errors

- insufficient purity of standards
- bad recovery rate of samples containing matrix
- scan perpendicularly to chromatography
- evaluation acc. to 100 % method
- force a calibration function to a linear one
- evaluation outside the working range
- sample and standard react differently with derivatization reagent
- instability of zones during scanning
- different shape of sample and standard zone caused by matrix

Amino acids in drinks

Intermediate precision < 1,6 % Recovery rate 99,4 and 100 %

G. Indrayanto et al., University of Airlangga, Indonesia, see CBS 90

Facultative parameters

9. Ruggedness (stress test)

Usage of the method under varying conditions, stability test of the whole procedure Note: Sdv, coefficient of variation, confidence interval, resolution, R_F value, selectivity, sensitivity

10. Control charts (mean value, recovery) Check by control standard over a long period, confirms trueness and reliability of a procedure

Note: Warning limit (2s) and control limit (3s)

Stability test

K. Thiekötter, Finzelberg GmbH & Co. KG, see CBS 85

Stability test of golden seal

2-D separation of alkaloids, CAMAG Laboratory, Muttenz

Stress test

2-D separation with intermediate reaction

... with the same solvent, plate turned by 90°

Stress test of Chaste Tree extracts

Diploma thesis of Franziska Wahli, Inst. of Pharm. Biology, University of Basel, 2002, at CAMAG Lab, see CBS 91

What is GLP/GMP?

- ✓ Sanitary regulations, safety measure ...
- ✓ Continued, further education
- ✓ Test plans
- ✓ Standard operating procedures (SOP)
- ✓ Safety of data/archives
- Data integrity: validated instruments (IQ, OQ, PQ) and methods
- ✓ Report (duplication)
- ✓ Certified reference substances
- \checkmark User validation (pass word) 21 cfr 11

Why HPTLC?

- ✓ All information at first glance
- ✓ High matrix tolerance
- ✓ Less effort for sample preparation
- Flexible detection and identification
- ✓ Rapid, sensitive and cost-effective
- Separation under identical conditions

Disadvantages – not at all!

- \checkmark (Room with air-conditioning system)
- ✓ (Reproducibility ↔ thorough knowledge of factors of influence necessary!)
- (No black box, not fully automated, but info stored similar to a compact disk enables flexibility & creativeness!)
- (Open system (... additional vapor phase, multicomponent mobile phase, activity of the sorbent) increases possibilities for a good separation!)