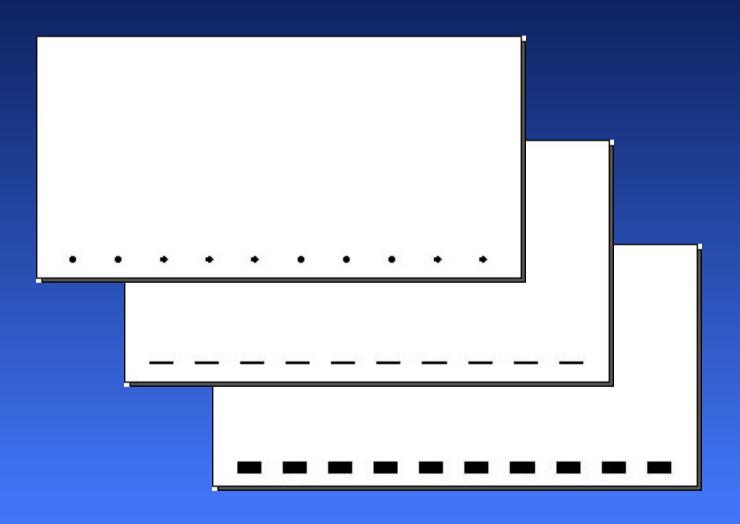
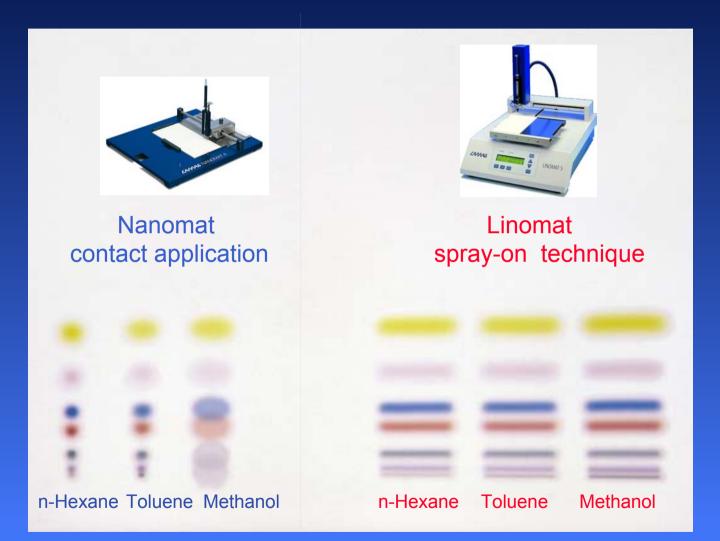


Planar Chromatography

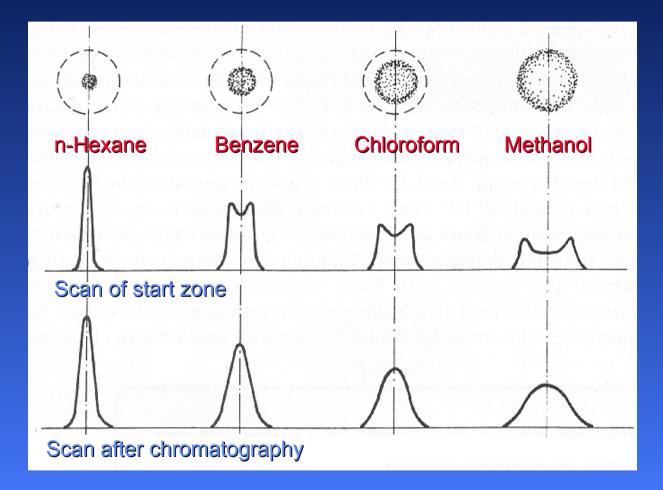
Overview of sample application


- Critical step in the TLC procedure
- How to do it best?
 - ✓ Advantages of automated application
 - ✓ Modes of application
 - ✓ Contact or spray-on technique? Bands or spots?
 - ✓ Advantages of bandwise application
 - ✓ Influence and properties of the application solvent
 - \checkmark Devices and examples for application volumes
- Special cases
 - ✓ Overspotting
 - ✓ Application for preparative purposes
 - ✓ Application of effluent from HPLC
- GLP conform, Instrument Validation, Operational Qualification

Advantages of automated application


- ✓ GLP conform software documentation
- ✓ Better reproducibility
 - No damage of layer
 - Exact volume applied
- \checkmark Enables band application which improves separation
- ✓ More convenient
- ✓ Time-saving
- ✓ Standardized rinsing procedure (avoids cross over)
- ✓ Independent of personal variances
- ✓ A "must" for quantitative HPTLC!

Modes of application



Contact or spray-on technique?

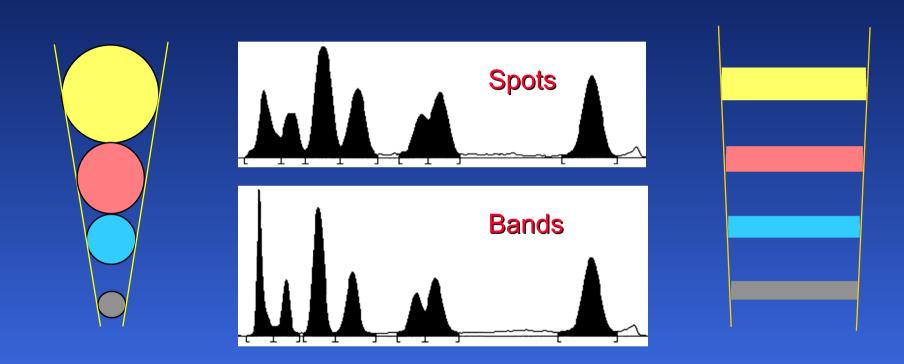
Note: Application solvent has great influence by contact application. Band application improves separation!

Influence of the application solvent

Note: Application solvent has a great influence by contact application. It should have as less elution power as possible!

Properties of the application solvent

Volatility


- Volatility enables evaporation if the application solvent not completely evaporated it can influence chromatography (heading).
- The more volatile, the faster the application rate can be.

Elution power

 Elution power should be as low as possible, however sample should sufficiently be dissolved.

Bands or spots?

Note: Band application improves separation - especially by high sample volumes!

Advantages of bandwise application

- ✓ Better resolution (about 32 % according to Touchstone and Levin, J. Liqu. Chromatog. 3 (1980) 1853)
- Better S/N ratio because of evaluation of the homogeneous middle part (consequently better reproducibility, LOQ and LOD)
- Enabling a multi-level calibration by application of different volumes of the same standard solution via spray-on technique (less labor time and avoidance of dilution errors)

How to get a focussed start zone

- ✓ Choose suitable solvent for application
- Decrease rate of application
- ✓ Dilute the sample and apply higher volumes
- ✓ Concentration of 0,001% (10 ng/µL) to 0,1 % (1 µg/µL)
- ✓ Apply bandwise instead of spotwise
- High volumes of matrix-rich samples can be applied as areas followed by a focussing pre-run with a polar solvent, e.g. methanol, upto the upper edge of the start zone area

Application devices

Fully automatic devices

- CAMAG Automatic TLC Sampler (ATS4)
- DESAGA AS 30 TLC Applicator and Sampler
- Zinsser Analytic GmbH Lizzy-TLC
- Baron TLS 100

Half automatic devices

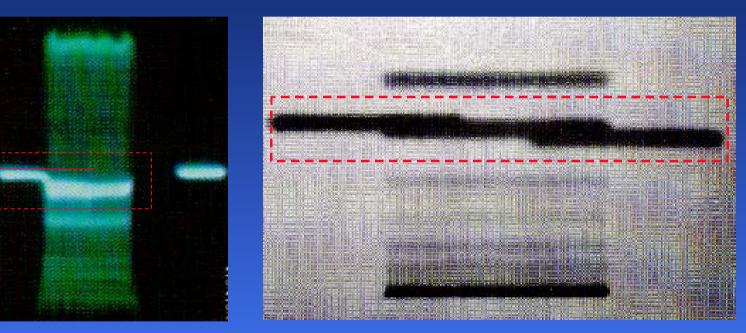
• CAMAG Linomat 5

Manual devices

- CAMAG Nanomat 4
- OM Laboratory SA-101 Multiple Sample Applicator
- DESAGA TLC Spotter PS 01
- Romer TLC AutoSpotter

Examples for application volumes

High sample volumes:


• Option with heated spray nozzle

• Spraying as rectangles/area

Note: The higher the application volume, the more volatile and unpolar the solvent for application should be - otherwise it should be applied slowly.

Overlapped application of bands

Shift of hR_F value due to matrix interference or different compounds? Overlapped application of standard and sample gives the right answer!

Approval

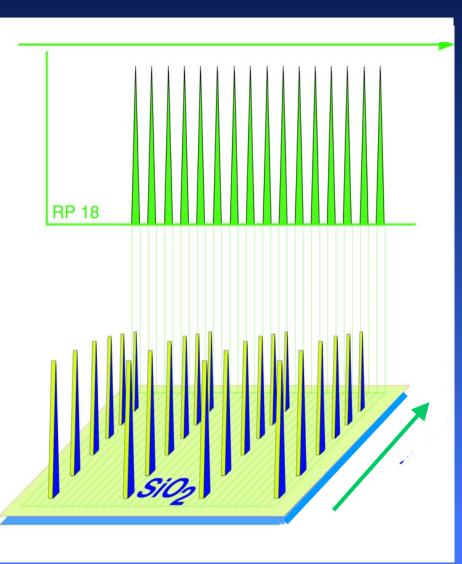
Disapproval

Hahn-Deinstrop, E.: Applied Thin-Layer Chromatography. Best practice and avoidance of mistakes, 2000, Wiley-VCH, Weinheim, ISBN 3527-298398.

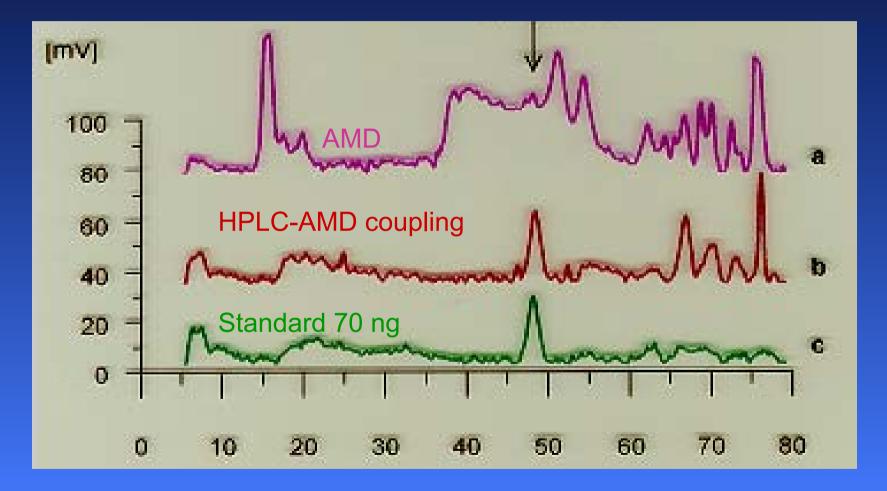
Application for preparative purposes

- With 500 µL syringe
- High volume of sample applied as streak, e.g. 18 cm band
- TLC layer thickness > 500 μm
- Devices
 - CAMAG Linomat 5: Half automatic device, PC controlled
 - ✓ Alltech TLC sample streaker: Manual device

Application of effluent from HPLC

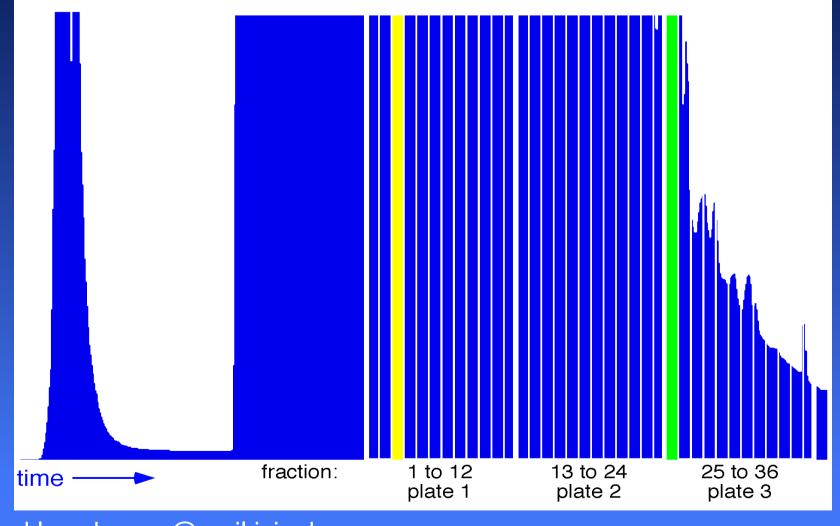


- Special application device called DuoChrom
- Flow rate 100 μL/min for methanol (40 μL/min for methanol water 3:7)
- Average cut time 1-2 min, delay time 2 600 s
- Application as rectangles/area
- Spray-on technique with heated spray nozzle allows higher flow rates

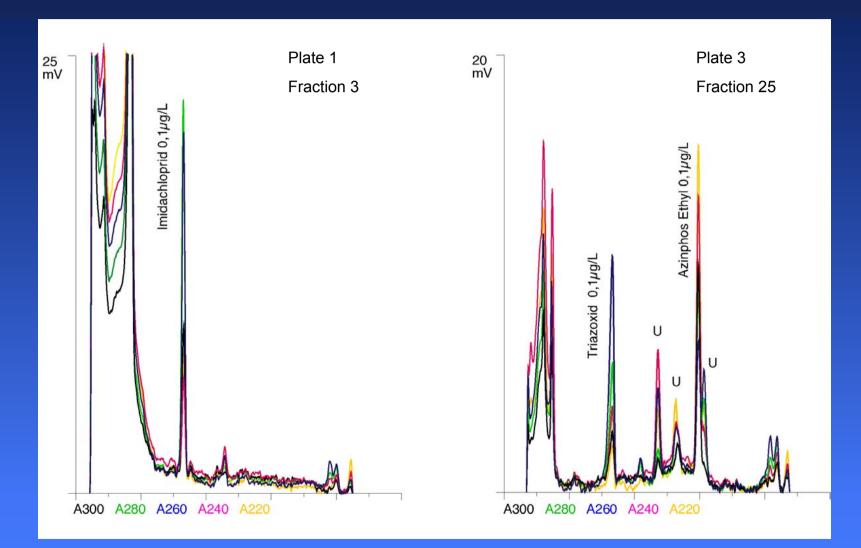

HPLC-AMD coupling

1. HPLC Reversed phase

2. HPTLC Normal phase



Iprodione in lettuce


U. Wippo, H.-J. Stan, Deutsche Lebensmittel-Rundschau 5, 144-148 (1997)

Surface water spiked with 50 pesticides

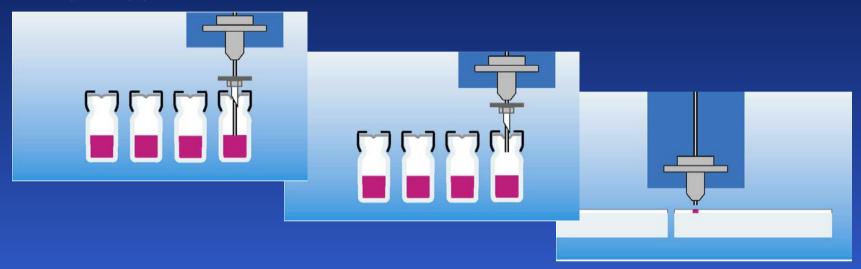
klaus.burger@mail.isis.de

Surface water spiked with 50 pesticides

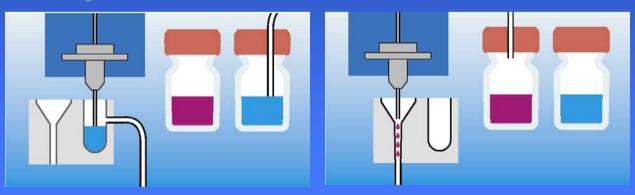
klaus.burger@mail.isis.de

Benefits of HPLC-AMD

- ✓ Multi-method
- Enhanced separation power
- ✓ Peak purity tests
- Post-chromatographic derivatization
- ✓ Results by two independend methods
- \checkmark Use as single devices
- ✓ Gain in flexibility and analytical quality


General application parameters

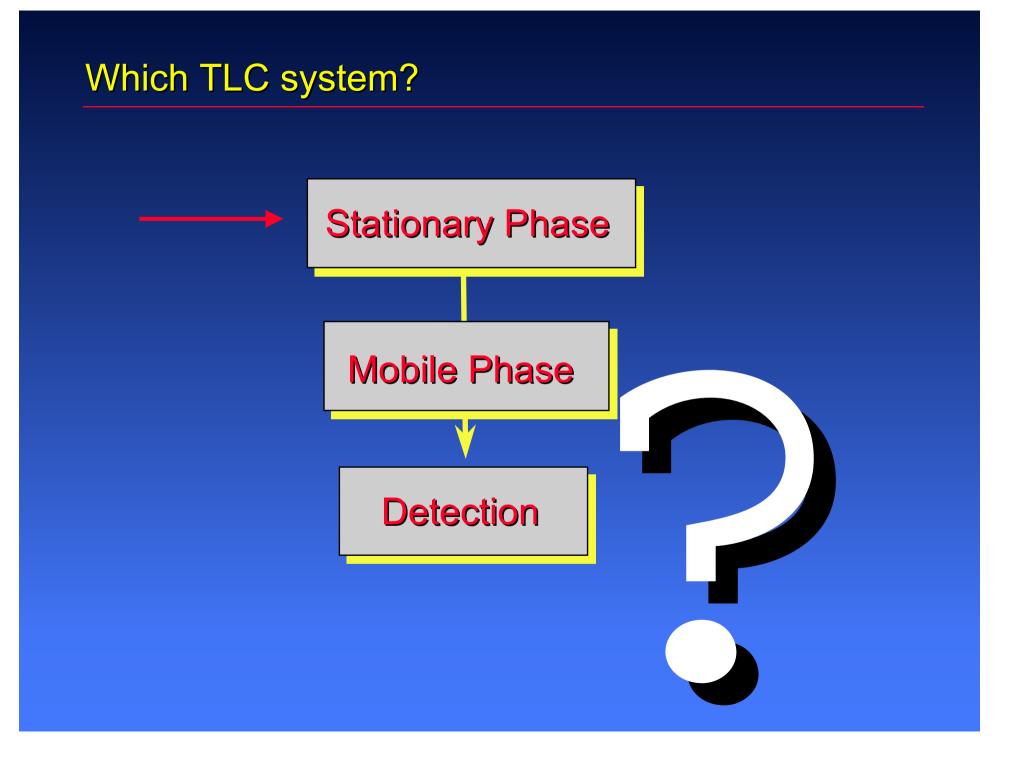
Sequence and layout


🎉 winCATS - [PAK-¥511.cme]									
💯 File Instruments Run Administration View Tools Window Help									
PAK-V511.cme									
Stationary phase	<u>Syringe</u> : 25 yul Band Jength: 7.0 mm <u>Application mode</u> : Spray band y Positioning <u>Number of tracks</u> : 9 → Status: OK First application position ½: 12.0 mm					- 		mm	Window Help
	Di		m position <u>)</u> ween track Appl.	s : 9.5	r Rack	Rack	⊙ Automatic O Ma	Active	
	1	(mm) 12	volume 40	μ	column A	row	Blindprobe	V	
	2	21.5	2500	nl	A	2	Standard		
	3	31	5	μΙ	A	2	Standard	V	
	4	40.5	10	μI	A	2	Standard		
	5	50 59.5	8 40	μl	A	3	Probe Probe	<u>र</u>	
		69	40	μ	A	4	Wiederfindung		
	8	78.5	15	μ	A	2	Standard	<u> </u>	
	9	88	25	μ	A	2	Standard		
Tree Proper 💕 TLG S	_ ∢ ▶	∖ ATS4 G	eneral λs	equen	ce 🖌 Lay	out /			
					Tree		Proper S ²⁷ TLC S		ATS4 General & Sequence Layout /

High performance mode of application

Sample application

Rinsing

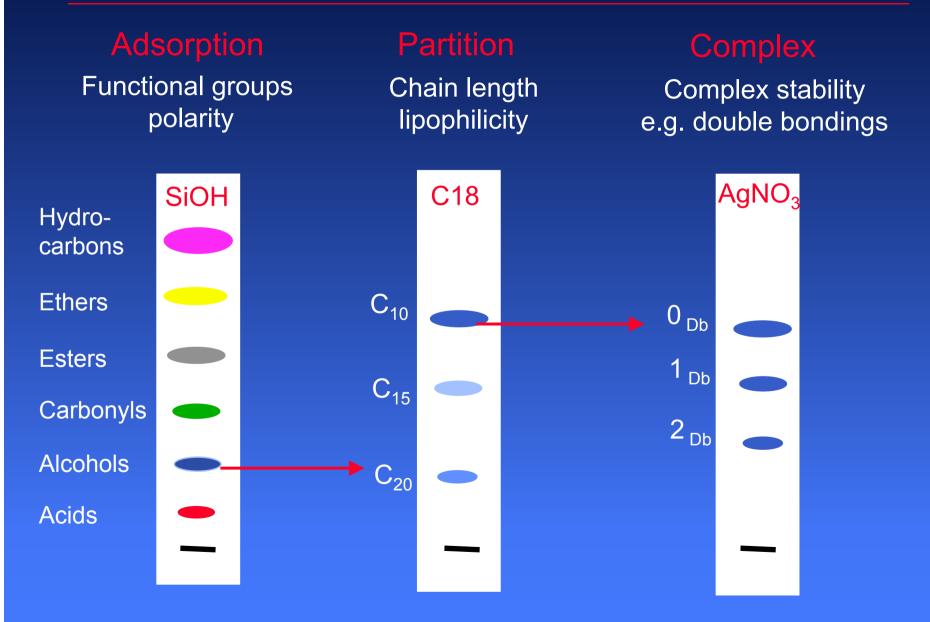

Sample application

ATS 4 Instrument Validation

Positioning test	Target	Detected	?
Table backlash	<200µm	Ххх	OK
Table reproducibility	<25µm	Ххх	OK
Table leeway	Yes	Yes	OK
Tower backlash	<200µm	Ххх	OK
Tower reproducibility	<50µm	Ххх	OK
Tower leeway	Yes	Yes	OK
Rack backlash	<200µm	Ххх	OK
Rack reproducibility	<50µm	Ххх	OK
Rack leeway	Yes	Yes	OK
Syringe backlash	<100µm	Ххх	OK
Syringe reproducibility	<10µm	Ххх	OK
Syringe leeway	Yes	Yes	OK
Lift backlash	<200µm	Ххх	OK
Lift reproducibility	<50µm	Ххх	OK
Lift leeway	Yes	Yes	OK
Punch move adjustment	≺200µm	Xxx	OK
Punch delay min.	>180ms	Ххх	OK
Punch delay max.	<300ms	Ххх	OK
Punch leeway	Yes	Yes	OK
Syringe test (Spray)	Target	Detected	?
Spray test	4-6	7	
Spray test (repeat)	4-6	5	OK
Leakage test 1	Yes	Yes	OK
Leakage test 2	Yes	Yes	OK
Rinsing	Yes	Yes	OK
Syringe test (Contact)	Target	Detected	?
Contact test	Yes	Yes	OK
Leakage test 1	Yes	Yes	OK
Leakage test 2	Yes	Yes	OK
Rinsing	Yes	Yes	OK

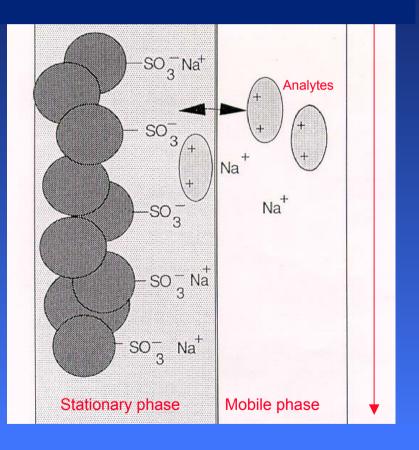
ATS 4 Operational Qualification

- ✓ Checksum of the installed software
- ✓ Cleaning of spray nozzle
- ✓ Check of state of the septum punch
- Manual confirmation of gas-tightness of the syringe and application pattern
- ✓ Reproducibility of phenacetin
 - by contact application:
 volume error is ≤ 1.5 %
 (or the total error is ≤ 2.1 %)
 - by spray application:
 volume error is ≤ 1.5 %
 (or the total error is ≤ 1.8 %)


Overview of stationary phase

- Separation mechanisms
- Guidelines for the selection
- Impregnation
- Prewashing
- Activation
- TLC versus HPTLC versus UTLC
- Layer support and binder
- Fluorescence (= phosphorescence) indicator
- Manufacturer/batch dependence
- Declaration
- Detection reagents

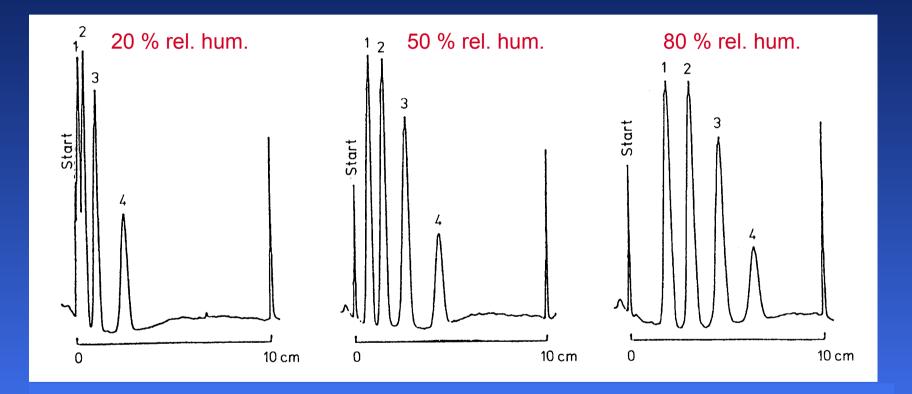
Separation mechanisms


- ✓ Adsorption chromatography
- ✓ Partition chromatography
- ✓ Complex chromatography
- ✓ Ion exchange chromatography

Separation mechanisms

Separation mechanisms

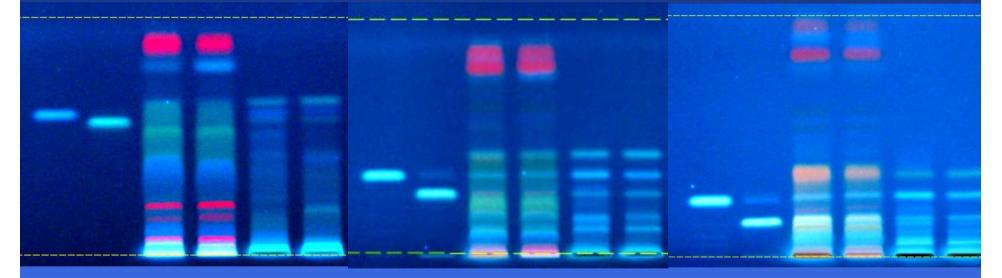
Ion exchange



Guidelines for stationary phase selection

Silica gel All classes of compounds Aluminium oxide Basic compounds (alkaloids, amines, etc.), steroids, terpenes, aromatic and aliphatic hydrocarbons Sugars, carboxylic acids, sulfonic acids, phenols, Amino phase purines, pyrimidines, nucleotides Cyano phase All classes of compounds, PHB esters Diol phase All classes of compounds, steroids, hormones RP 2, 8, 18 phases Polar substances, separation according to lipophilic properties and chain length, steroids, tetracyclins, phthalates, barbiturates, nucleo bases, aminophenols Polyamide Phenols, flavonoids, nitro compounds PAHs (caffeine), number of diol groups (boric acid), Silica gel impregn. number of isolated double bonds (silver nitrate) Chiral phase Enantiomers

Terminology and polarity


- Normal phase
 - polar SP + non polar MP
- Reverse phase
 - non polar SP + polar MP
- Polarity of the layer
 - $Si > NH_2 > CN/Diol > RP-2 > RP-8 > RP-18$

Rabel, F. in Sherma, J., Fried, B.: Handbook of Thin-Layer Chromatography, Marcel Dekker, New York, 2003, ISBN 0-8247-0895-4.

No impregnation

Impregnation in a 4% solution of sodium acetate for 2 s Impregnation in a 10% solution of sodium acetate for 20 s

Separation of ginkgolides with toluene - ethyl acetate – acetone - methanol 20:10:10:1.2 derivatization with acetic anhydride, see CBS 91

Formation of complexes with	Concentration of impregnation solution	Fields of application
EDTA	10%	Cephalosporins, tetracyclines, metal ions, phospholipids, phenols
Boric acid or borate	5%	Ascorbic acids derivatives, sugars, phosphatidylinositols, urethane derivatives, mono-/di-/triglycerides, stearic acid, lipids
Transition metals salts	5-20%	Amino acids, aromatic amines, sulfonamide, anilines, quinolines, phenol derivatives
Iron(III) salts	5-20%	Phenolic acids
Silver nitrate	3-20%	Interaction of Ag ⁺ with π-electrons of double/triple bounds. Fatty acids, diglyceride/triglyceride, phospholipids, glycolypids, steroids

Formation of charge transfer complexes

|--|

Ion-pairing

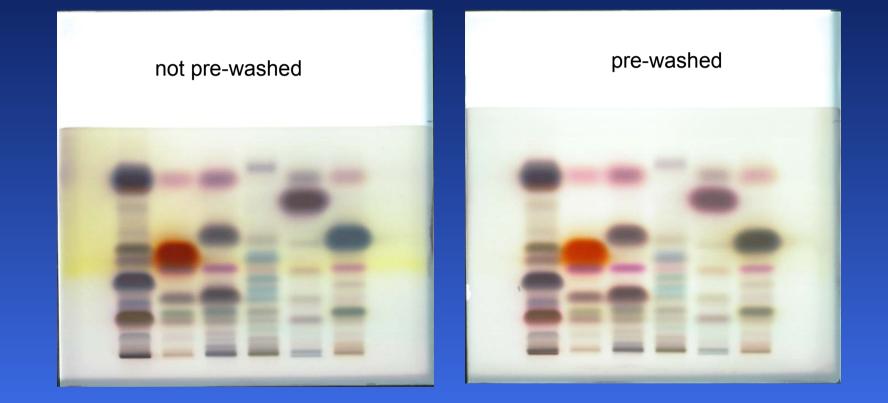
Quaternary ammonium salts	0.05 M	Sulfa drugs, penicillins
------------------------------	--------	--------------------------

Adjustment of pH-value

Inorganic acids	0.1-0.5 N	Phenols, acids, aromatic amines
Potassium/sodium hydroxide	0.1-0.5 N	Alkaloids, amines, basic compounds
Buffer salts		Curcumin derivatives, sugars, heavy metals, phloroglucinols

Impregnation of the layer

Modification of partition coefficient


Formamide		Local anesthetics, alkaloids, digitalis glycoside, nitrophenols
Ammonium sulfate		Lipids, phospholipids
Sodium nitrite		Phenols
Sodium bisulfite-citrate buffer		Sugars
Sodium sulfate	0.1 M	Sugars
Sodium acetate	4-10 %	Terpene lactones
Lithium/sodium/potassium salts		Metal ions, aromatic amines
Ammonium thiocyanate		Metal ions
Butylamine		Metal ions

Prewashing of the layer

- to get rid of impurities (lab atmosphere, packing material, i.e. shrink wrapping foil etc.)
- to get rid of binder components which can be eluted by polar solvents
- \checkmark to get a better baseline
- ✓ to improve LOD and LOQ
- ✓ to improve reproducibility
 - Important... for old layers
 - for ultra trace analysis (ppt range)
 - if working range is near the LOD or LOQ

Prewashing of old layers

а

Pre-chromatographed with methanol, see CBS 91

Best way to do it?

According to Maxwell et al., JPC 12, 109-113 (1999)

- Two step cleaning method: with methanol first pre-development then immersion

for 5 min, air-dry for 5 min, followed by heating at 80 °C for 15 min

- According to Jork et al. (about 10 years old)
 - immersion in iso-propanol over night or for at least 2 hours, followed by heating at 120°C for 30 min

According to CAMAG (current recommendation)

- pre-development with methanol followed by heating at 120°C for 20 to 30 min According to Dr. Burger (current recommendation)
 - in a clean bench for at least 8 hours, followed by heating at 30 min at 50 100 °C
 - neutral: with methanol
 - acidic: formic acid methanol 1:100, then methanol or
 - basic (for acidic plates, e.g. Merck No. 15445): solution of 0,0001% sodium hydroxide (2 mL 0,1 M NaOH in 10 L methanol), then methanol

Best way to do it?

Note:

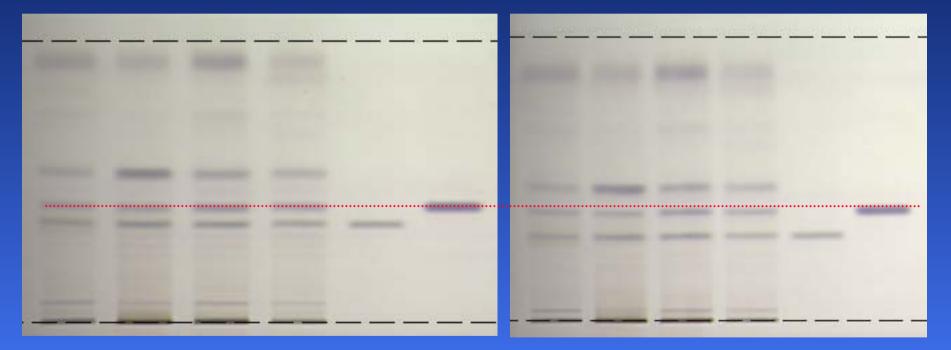
- Use very clean solvents for prewashing!
- Avoid any contamination again during drying!
- Cool down the active plate to room temperature in a dust and fume free environment (e.g. a large empty desiccator) and let it equilibrate with the relative humidity of the laboratory atmosphere!
- Be care of storage and declaration of prewashed plates!

Activation of the layer

→ Silica gel: after 3 min 50 % of the max. water content is adsorbed
→ Aluminum oxide: after 12 min 80 % ...

- Within a few minutes the humidity of the air is adsorbed
- Activation or storage in the desiccator what happens during application?
- Breathing onto the layer can cause local de-activation

Reproducible humidity regulation by conditioning with definite dilutions of sulfuric acid or saturated salt solutions or use mid- or unpolar stationary phases


Activation of the layer

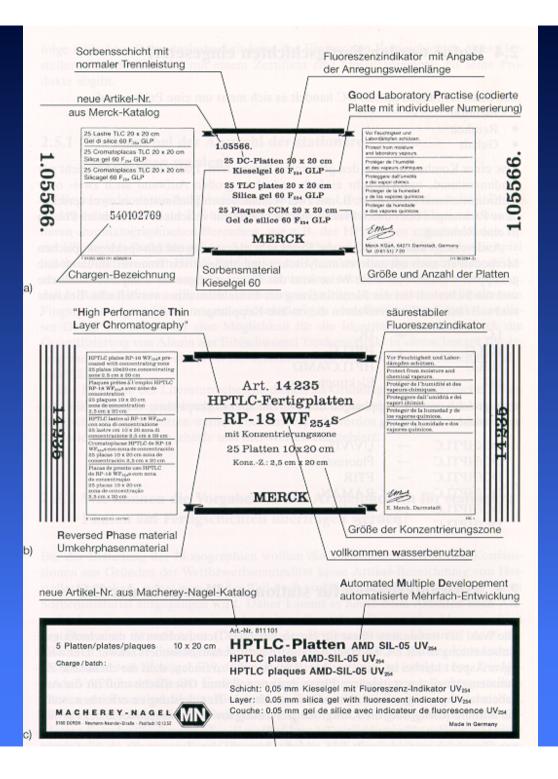
mass % H ₂ SO ₄	% rel. humidity	saturated salt solution	% rel. humidity
10	96	Pb(NO ₃) ₂	98
20	88	KBr	84
30	75	NaNO ₂	66
40	56	NaHSO ₄ · H ₂ O	52
50	35	KF	31
60	16	HCOOK	21
70	3	ZnCl ₂ ·1.5 H ₂ O	10

Activation of the layer

45% relative humidity

32% relative humidity

Fingerprint (alkylamides) of Echinacea purpurea with toluene - ethyl acetate - cyclohexane - formic acid 24:6:3:0.9 derivatization with anisaldehyde, see CBS 91

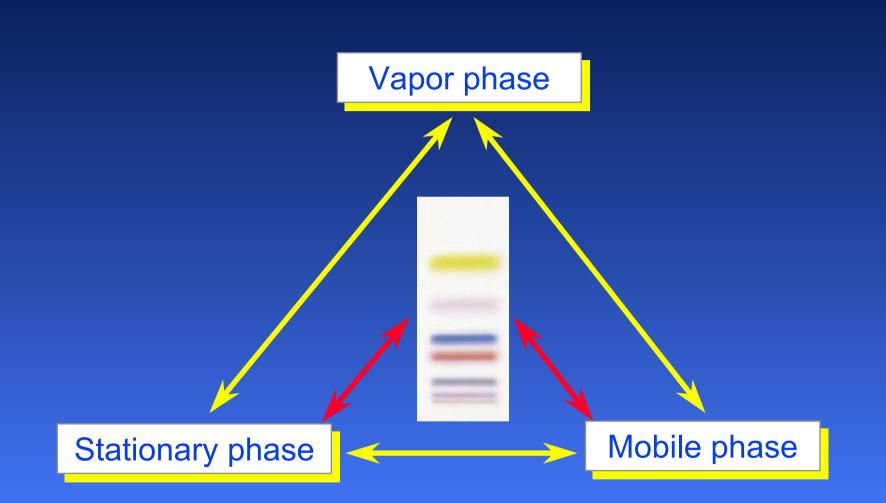

TLC versus HPTLC versus UTLC

			TLC	HPTLC	
	Silica gel		irregular particles	irr./glob. particles	n
	Mesopores		60 Å = 6 nm	60 Å = 6 nm	3
	Mean particle siz	е	10 - 15 µm	5 - 7 µm	1
	Particle distribution	on	wide	narrow	ľ
	Layer thickness		200, 250 µm	100, 200 µm	С
	Number of sampl	es	max. 12 20 x 10 cm	36-72 20 x 10 cm	1
Migration distance		100 - 150 mm	30 - 70 mm	1	
	Migration time		15 - 200 min	5 - 30 min	1
	Solvent use		50 - 100 mL	5 - 20 mL	1
	Detection limit:	Abs	100 - 1000 ng	10 - 100 ng	1
		Fluor	1 - 100 ng	0,1 - 10 ng	0


nonolithic without binders 30-40 Å = 3-4 nm - 2 µm macrospores narrow ca. 10 µm 12 6 x 3,6 cm 10 - 30 mm - 6 min - 4 mL - 10 ng 0,01 – 0,1 ng

Note abbreviations!

60	mean pore size in Angström (= 6 nm)
F	with fluorescent indicator
254	excitation wavelength of F
S	acid stabile fluorescent indicator (blue)
R	specially purified
RP 2, 8, 18	reversed phase with 2, 8, 18 hydrocarbor
	chain length
W	water-tolerant layer
PSC	preparative layer, thickness > 0,25 mm
(G	gypsum as binder)
(H	without foreign binders)



Overview of mobile phase

- ✓ Chromatographic separation
- Classification of solvents (Trappe, Snyder)
- ✓ Optimization scheme
- ✓ Isotherms, peak asymmetry
- ✓ Polarity differences in mobile phase mixtures
- ✓ Vapor pressure of solvents
- ✓ Variations in temperature
- ✓ Stabilizers (manufacturer, batch)
- ✓ Diffusion (van Deemter)
- ✓ Viscosity (law of migration)
- ✓ Developing distance
- ✓ GLP recommendations

Chromatographic separation

Chromatographic separation

Interactions	kJ/mol
Van der Waals forces	5 - 20
Dipole-induced dipole	8 - 25
Dipole-dipole	25 - 40
Hydrogen bonding	25 - 40
Ionic bonding	250 - 1050
Covalent bonding	670 - 3360

Chromatographic separation

- The mobile phase moves by capillary forces through the particle pores (6 – 10 nm).
- The substances are dissolved in the mobile phase and are transported over a certain migration distance.
- Different adsorption and/or partition equilibria cause different remaining times in the stationary phase.

Classification of solvents

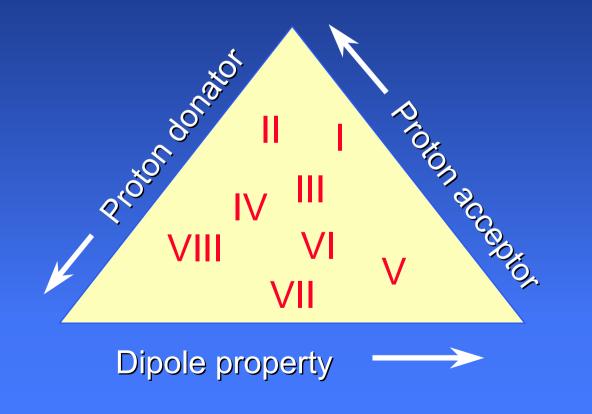
According to Trappe

- eluotropic series listed according to increasing elution power
- elution power is defined as adsorption
 energy per unit surface area of sorbent
- \checkmark dependent on the sorbent
- ✓ standardized on pentane

Eluotropic series of different sorbents

Silica gel n-Hexane Pentane Cyclohexane Carbon tetrachloride Toluene Chloroform Dichloromethane Diethylether Ethyl acetate Acetone Ethanol Methanol Pyridine Water

Aluminum oxide Pentane n-Hexane Cyclohexane Carbon tetrachloride Toluene Diethylether Chloroform Dichlormethane Acetone Ethyl acetate Pyridine Ethanol Methanol Water

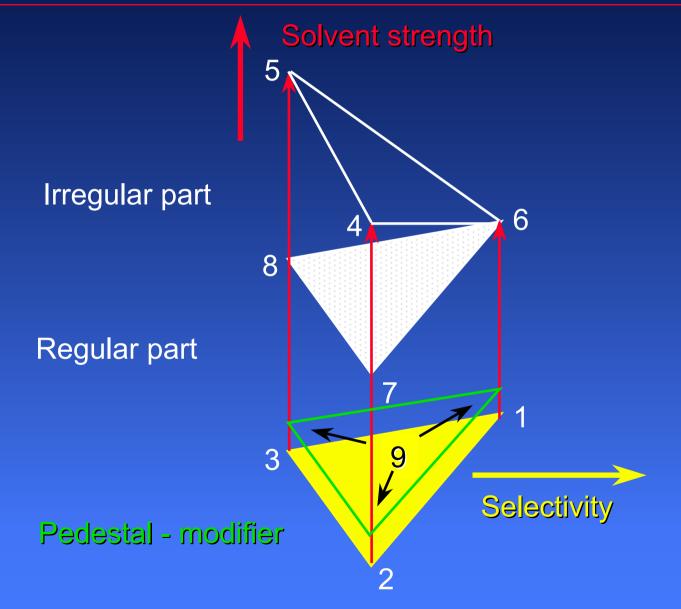

Water Methanol Ethanol Propanol n-Butanol Ethylmethylketone Acetone Acetonitrile Formamide **Dimethyl formamide** Dil. sodium hydroxide

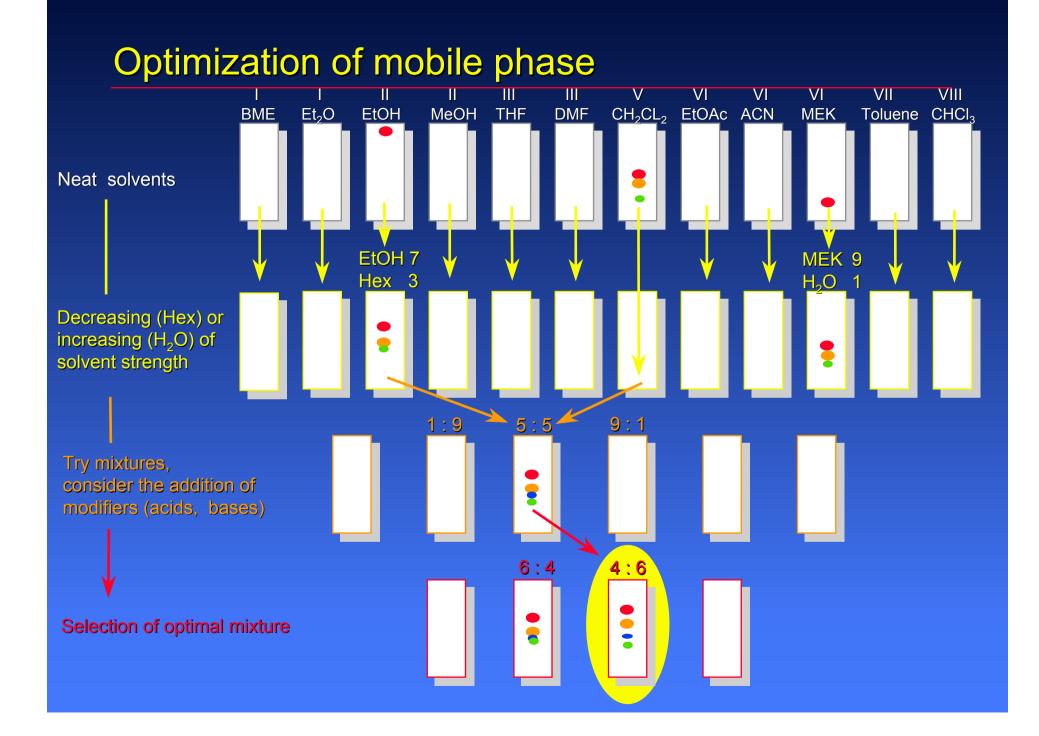
Polyamide

Classification of solvents

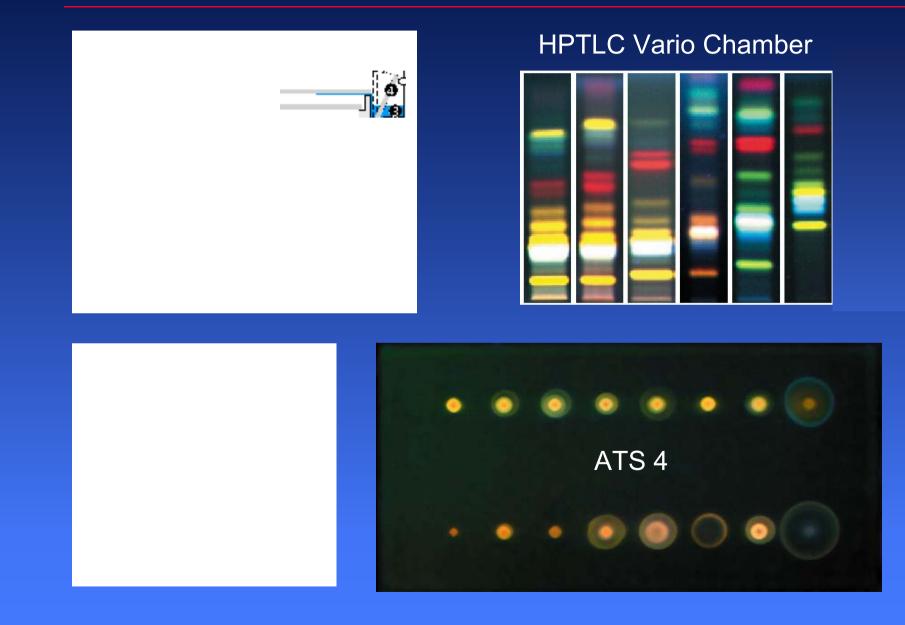
According to Snyder

- solvent strength
- selectivity groups (selectivity triangle)

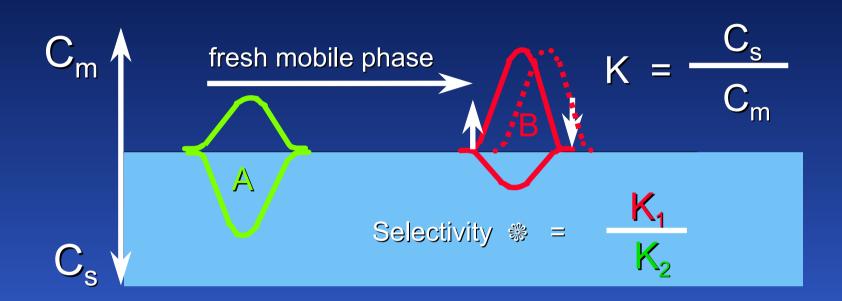

Normal phases

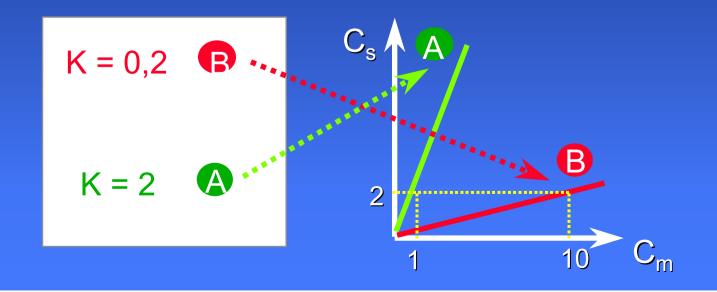

Group	Solvent	Solvent strength
Decrease	n-Hexane	0
	n-Butylether	2,1
1	Isopropylether	2,4
	Methyl-t-butylether	2,7
	Diethylether*	2,8
	n-Butanol	3,9
II	2-Propanol*	3,9
	1-Propanol	4,0
	Ethanol*	4,3
	Methanol	5,1
	Tetrahydrofuran*	4,0
Ш	Pyridine	5,3
:	Methoxyethanol	5,5
	Dimethylformamide	6,4

Reverse phases

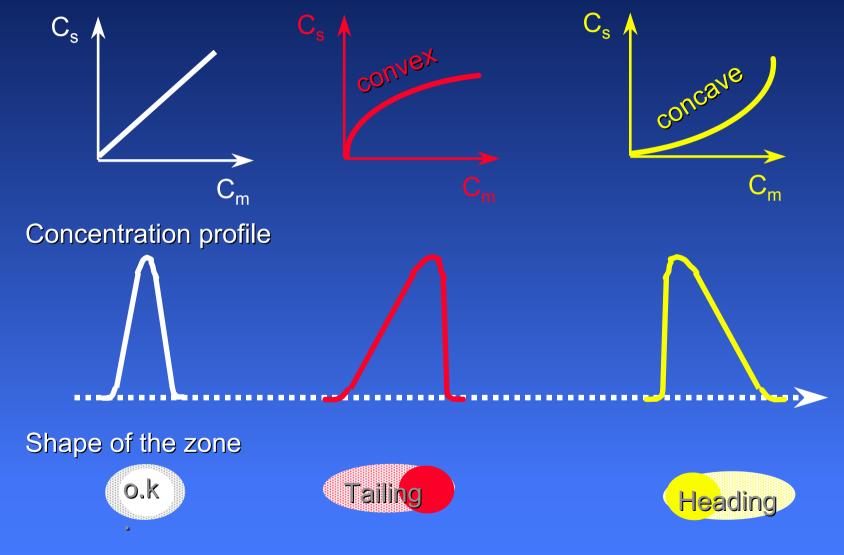

Group	Solvent	Solvent strength
Decrease	Water	0
	Methanol*	2,6
II	Ethanol	3,9
	2-Propanol	4,2
III	Tetrahydrofuran	4,5
VI	Acetonitrile*	3,2

Prisma model





Neat solvents


Partition and adsorption isotherms

Peak asymmetry

Partition isotherm

Overloading of the layer with substance

reduce amount or (take plate with higher layer thickness)
Retarded desorption due to active sorbent

use chamber saturation, preconditioning, modified layer Reaction between substance and sorbent

prewash, change or modify layer; mask interferences Local gradient by polar solvent rests from application

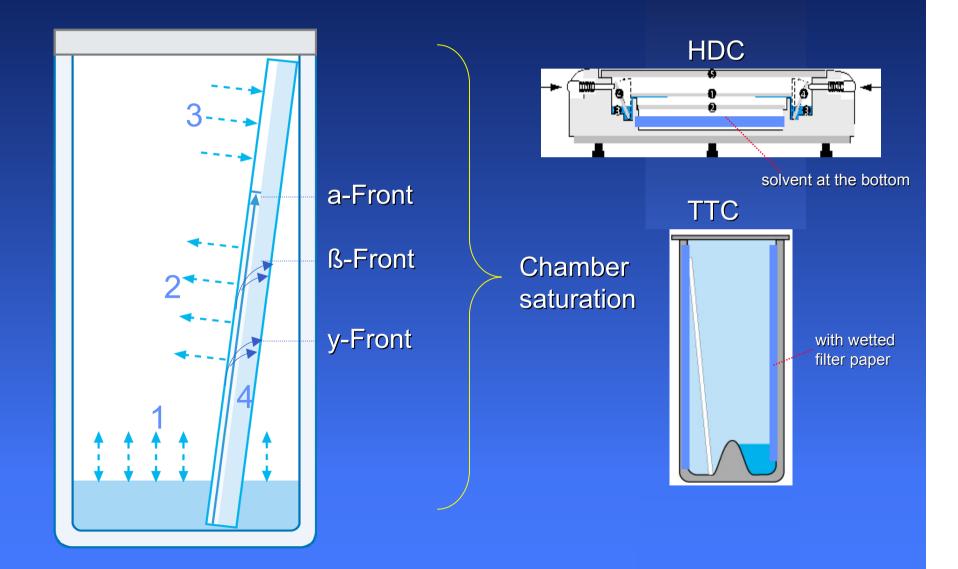
- remove solvent rests
- Convex partition/adsorption isotherm

change system, reduce substance

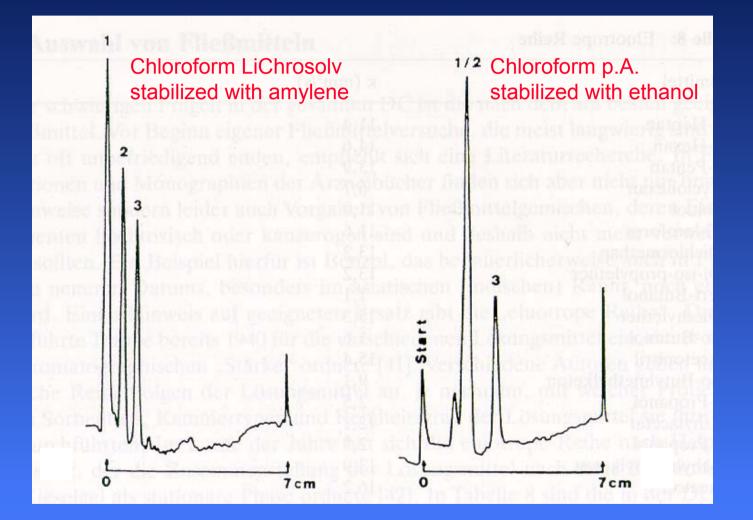
Dissociation of weak acids or bases

buffer layer or/and solvent, add acids or bases to solvent Chemical change of substance

modify layer, work in protected atmosphere



Wet start zone & weak mobile phase
dry start zone, stronger mobile phase
Concave partition/adsorption isotherm
change system


Mobile phase mixtures

TLC - isocratic? No!

- Solvent composition changes
- Solvent migration rate changes

Stabilizers (manufacturer, purity grade)

Zone diffusion according to van Deemter

$$\overline{H} = A + \frac{B}{v} + C * v$$

B for HPTLC: H ~ 12 μ m A, C for TLC: H ~ 30 μ m

- A Layer quality, Eddy diffusion
- B Diffusion term, longitudinal diffusion
- C Retardation term, local non-equilibrium

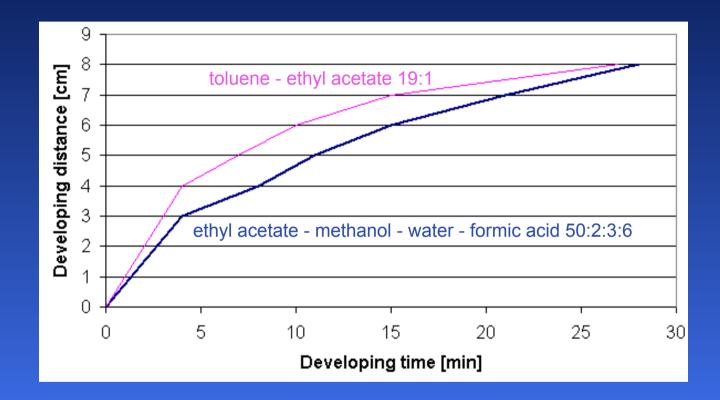
$$\overline{H} = 2 I dp + \frac{2 \gamma D}{v} + \frac{w dp^2 v}{D}$$

H Plate heigth

v Velocity of solvent front

Function of layer packing

- dp Particle diameter
- γ Labyrinth factor
- D Diffusion coefficient

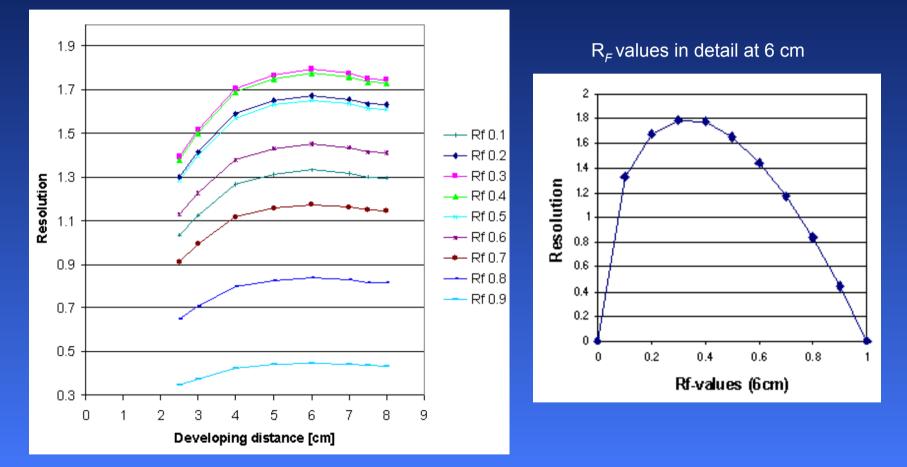

w Factor of packing structure

Law of migration

$$V_{F} = k \frac{\gamma}{\eta * 2 * z_{F}}$$

- V_F velocity of solvent front
- γ surface tension
- η viscosity
- z_F migration distance

Developing distance - velocity

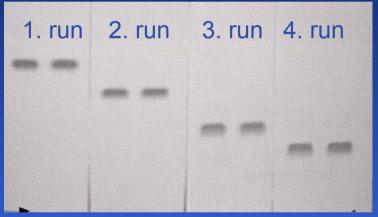


Note: Do not exceed a developing distance of 6 cm on HPTLC plates.

The higher the developing distance, the lower the velocity of mobile phase, the more influence of diffusion effects!

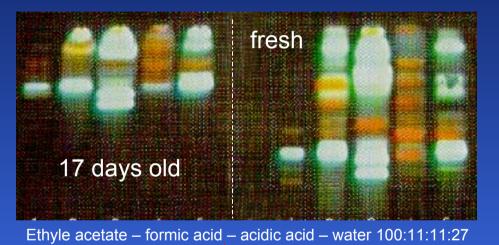
Developing distance - resolution

Influence of the developing distance and R_{F} values


Note: Components of complex mixtures should be spread over the entire separation distance. The most critical substance pair should be maintained at $R_F 0.3$ for best separation.

GLP recommendations

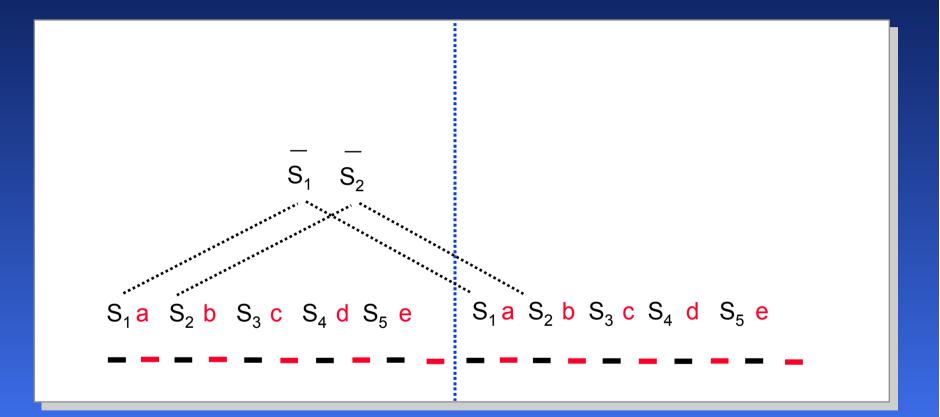
- Use multi component solvent systems only once composition will change!
- ✓ Prepare solvents freshly!
- ✓ Don`t use the trough chamber as "shaker"!
- Consider volume contraction measure separately!
- ✓ Prewash old layers!
- Don't breathe onto the layer or blow fluffs off you should condition in other modes!
- ✓ Note all relevant factors incl. humidity and temperature
- For chamber saturation use a filter paper wetted with solvent and let the vapor phase equilibrate for at least 30 min
- Use data pair method to reduce plate inhomogeneity

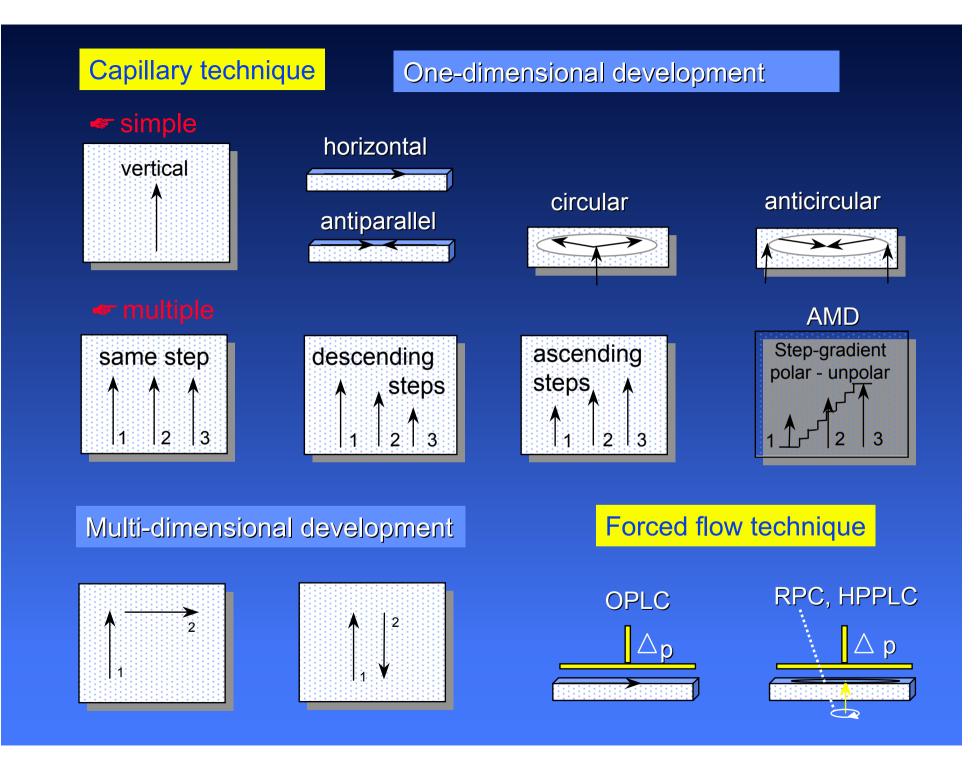

Use of solvents

Multiple use of solvents

Chloroform - methanol - ammonia 56:14:1

Preparation of solvents

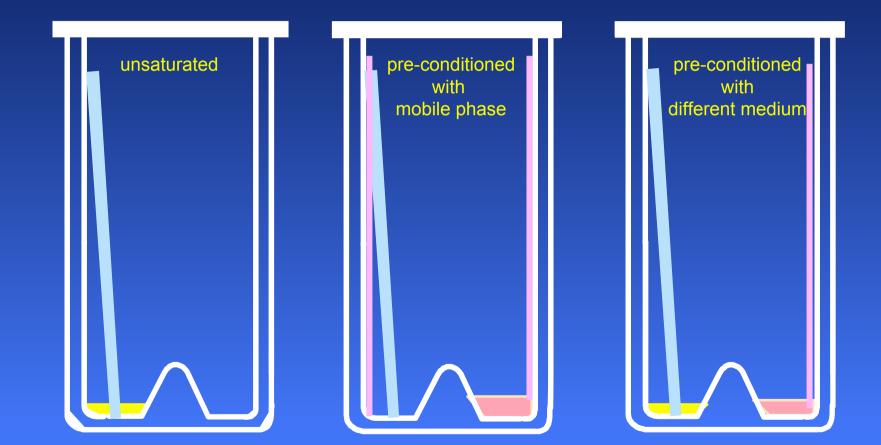



Do'nt re-use solvents!

Prepare solvents freshly!

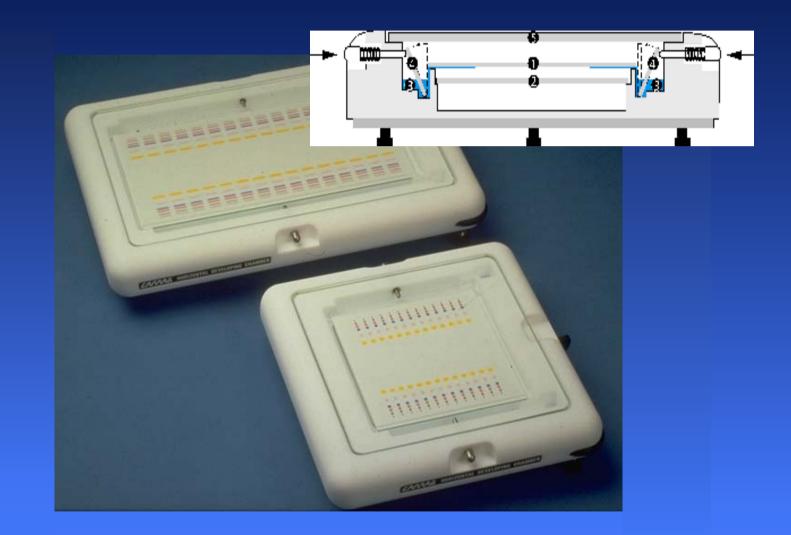
Hahn-Deinstrop, E.: Applied Thin-Layer Chromatography. Best practice and avoidance of mistakes, 2000, Wiley-VCH, Weinheim, ISBN 3527-298398.

Data pair method

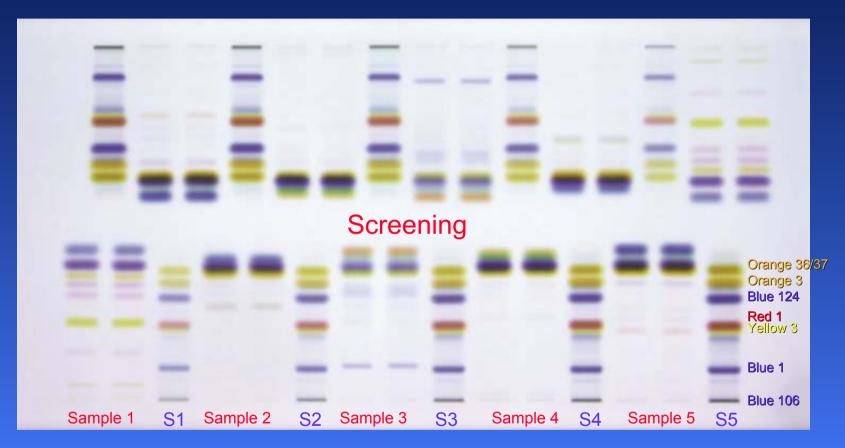


Examples of developing chambers

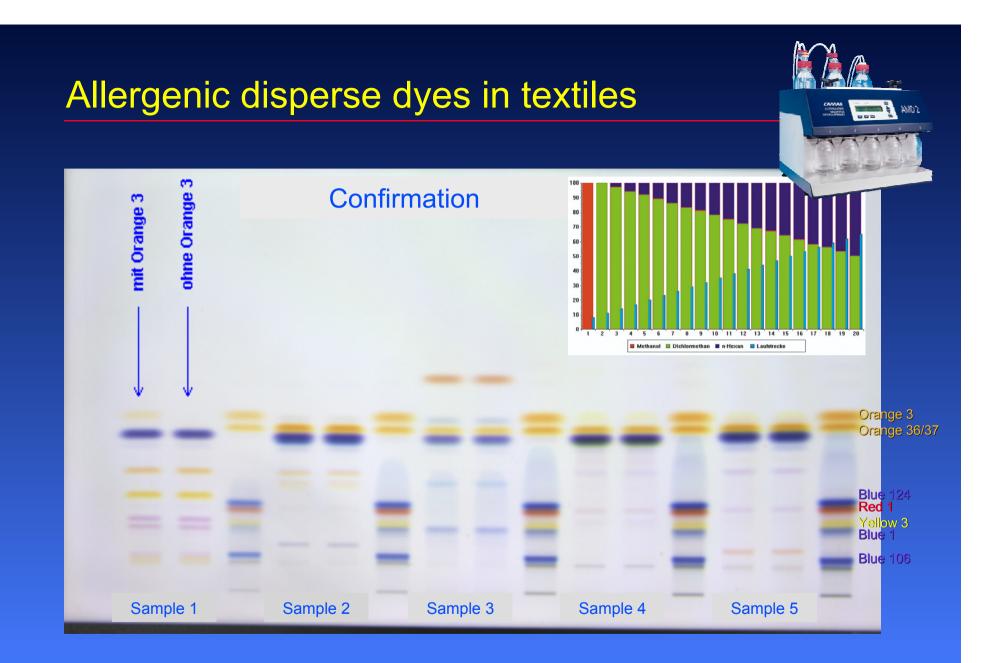
- ✓ Twin Trough Chamber
- ✓ Automatic Developing Chamber (ADC)
- ✓ Horizontal Developing Chamber (HDC)
- ✓ Automated Multiple Development (AMD)


Modes of the Twin Trough Chamber

Automatic Developing Chamber (ADC)



Horizontal Developing Chamber (HDC)



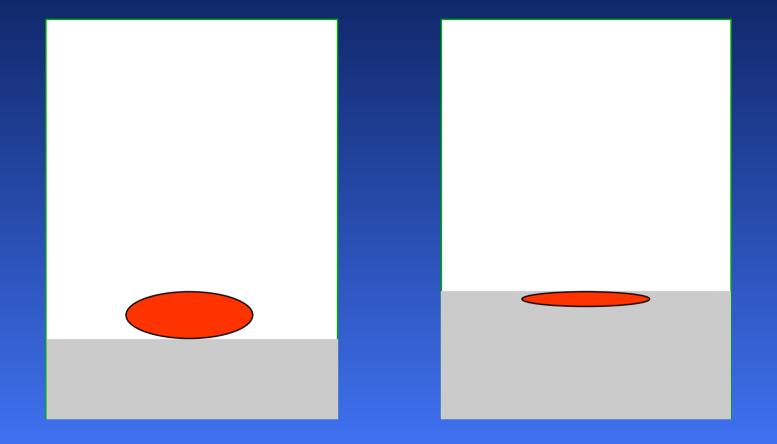
Allergenic disperse dyes in textiles

A. Bonhoff et al., STR Testing & Inspection AG, Steinach, Switzerland, optimized at CAMAG Lab, see CBS 82

Automated Multiple Development (AMD)

Automated Multiple Development (AMD)

- Burger et al. (1984): polarity gradient by multiple development with different solvents
- ✓ Also possible: pH gradient
- Drying under vacuum improved precision and reliability
- ✓ Focusing to sharp zones
- ✓ Zone profile independent of migration distance
- ✓ Migration distance independent of matrix
- ✓ Automation
- Separation of substances differing in polarity to a high extent
- ✓ Separation number > 40 at a migration distance of 80 mm



AMD – GLP conform

Comment :							
Universal gradient	4						
Content of							
Bottle 1: Methanol	Details 1						
Bottle 2: Dichloromethane	Details 2						
Bottle 3: n-Hexane	Details 3						
Bottle 4:	Details 4						
Bottle <u>5</u> :	Details 5						
Pre-cond. : none	Details Pre						
Instrument configuration							
Gas supply : O <u>A</u> ir O <u>N</u> 2	2						
Number of rinsing cycles before each start : 0							
Vacuum test : Min. <u>e</u> nd pressure to read	h: 10 mbar						
Ma <u>x</u> , pressure increas	e: 10 mbar/min						
AMD2 instrument							
<u>U</u> se: Christoph's ▼	Properties						
	Manual control						
	<u>D</u> ownload						

	um start volume :		Diableren	othara			n Houses			1
1 Methanol		2 Dichloromethane		3 n-Hexane						
26 ml			89 ml		30 ml					
Number of gradient steps :		20 🗧		ок						
#	1 Methanol	🤰 Di	chlorometh	🧧 n-I	lexane		🔲 Mig	🔣 Dry	题 P.	
1	100.0 Vol %		0.0 Vol %		0.0 Vo		7.0 mm	2.0 min		
2	83.3 Vol %		16.7 Vol %		0.0 Vo		10.3 mm	2.0 min		
3	66.7 Vol %		33.3 Vol %		0.0 Vo		13.6 mm	2.0 min		
4	50.0 Vol %		50.0 Vol %		0.0 Vo		16.9 mm	2.0 min		
5	33.3 Vol %		66.7 Vol %		0.0 Vo		20.3 mm	2.0 min		
6	16.7 Vol %		83.3 Vol %		0.0 Vo		23.6 mm	2.0 min		
7	0.0 Vol %		100.0 Vol %		0.0 Vo		26.9 mm	2.0 min		
8	0.0 Vol %		100.0 Vol %		0.0 Vo		30.2 mm	2.0 min	<u> </u>	
9 10	0.0 Vol %		100.0 Vol %	I	0.0 Vo	1%	33.5 mm	2.0 min l		
11 12 13 14 15 16 17 18 19 20	90 80 70 60 50 40									
	30 20 10									
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Methanol Dichloromethane n-Hexane Migration distance [mm] AMD2 General & Development Graphic / 								19 2		

AMD - focusing effect

AMD - procedure for gradient optimization

1. Start with a universal gradient - examples:

methanol methanol acetonitrile methanol/water methanol/water various solvents acetone

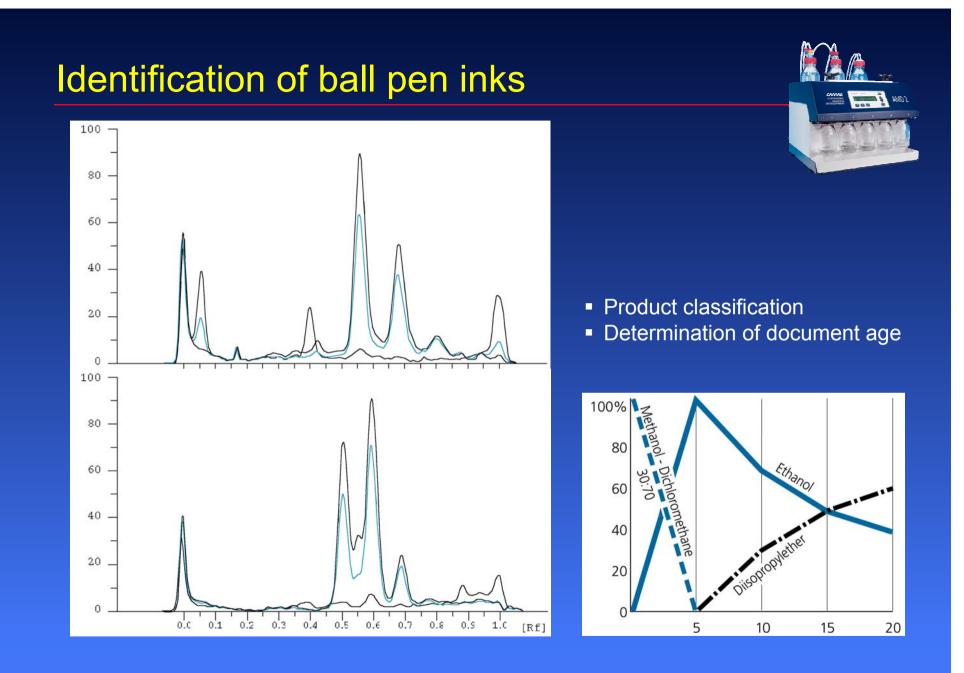
Base solvent dichloromethane t-butyl methyl ether dichloromethane acetonitrile t-butyl methyl ether ethyl acetate various solvents

n-hexane n-hexane n-hexane dichloromethane dichloromethane various solvents various solvents

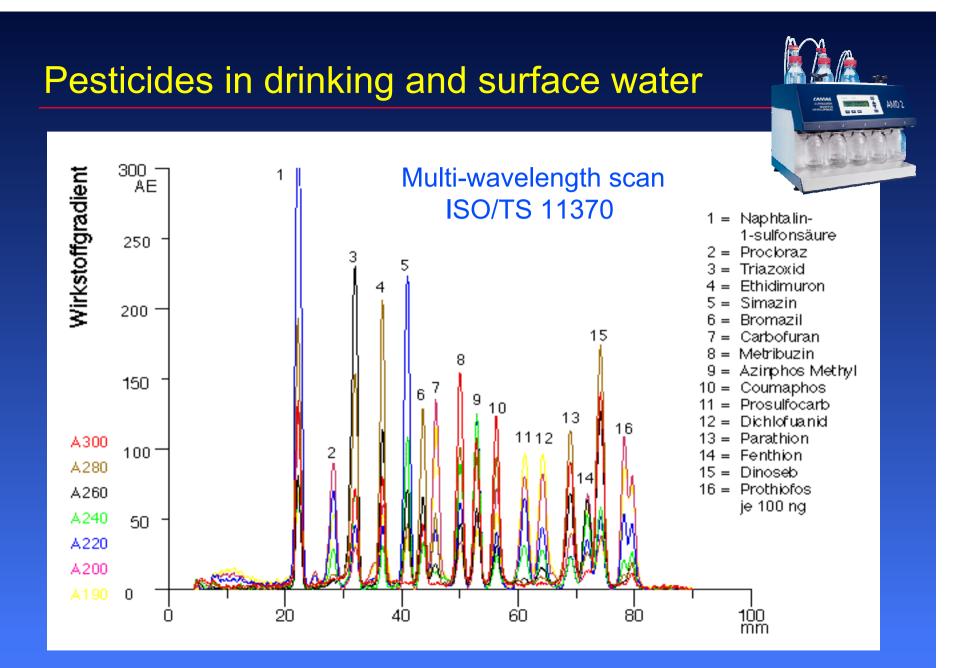
AMD - procedure for gradient optimization

- 2. If necessary change pH of the universal gradient
 - Add small amounts (0.01-2 %) of NH₃, HCOOH, CH₃COOH etc. to the polar solvent
 - Fill the conditioning bottle with 0.1-4 N solution of acids or bases
- 3. Go on with the best universal gradient
 - leave out parts not used
 - spread parts where substances are close together
 - ✓ optimized shallower gradient results
- 4. If no sufficient separation was yield so far
 - take a base solvent of different selectivity, e.g. t-butyl methyl ether, acetonitrile etc.
 - change the stationary phase, e.g. diol, amino, cyano or RP18 W

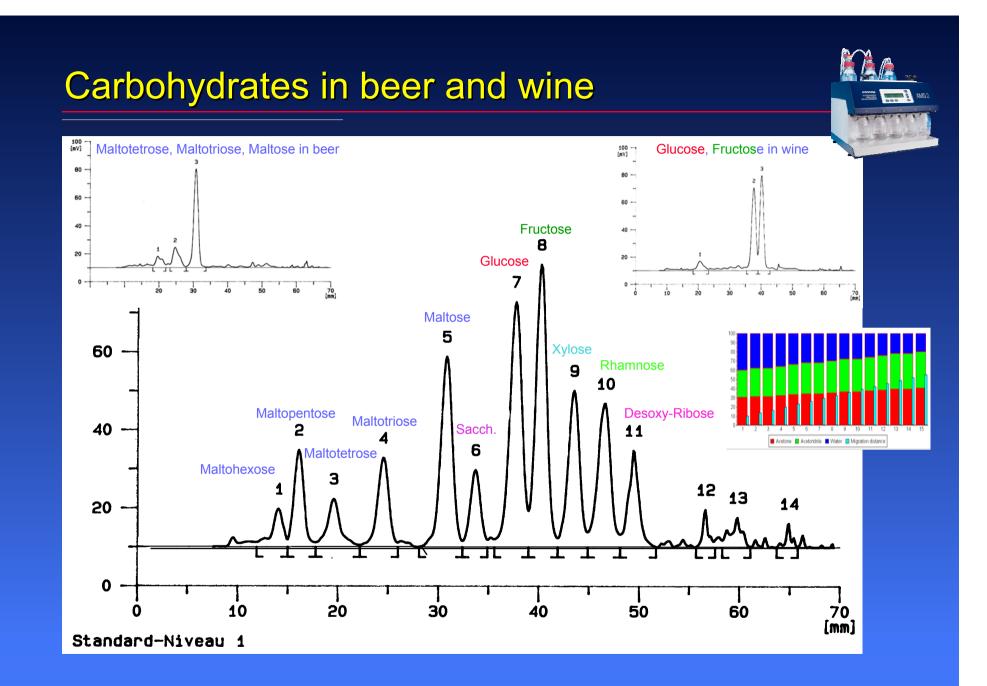
AMD - hints


Polarity gradients gentler than those given in the table below cannot be recommended:

Polarity change over 10 steps	min. change of volume [%]
Methanol to dichloromethane	5
Acetonitrile to dichloromethane	10
T-butyl methyl ether to n-hexane	15
Dichloromethane to n-hexane	30


To avoid increasing diffusion of peaks 5-10 steps are sufficient for isocratic development.

If the time of the gradient is too long (e.g. a gradient with 25-steps on a 200 μ m plate with 3 mm increments takes about 4 h)


- Use 100 µm layers: shorter developing and drying times (about 2.5 h)
- Leave out parts not used: reduction to 20 steps (about 2.5 h)
- Use shorter drying times if possible
- Use spherical silica gel plates reduces time, also drying time, to about 50 %
- ✓ 20 step gradient on spherical silica gel in 1.5 h for 18 samples,
 i.e. 5 min per sample.

F. Köhler, P. Seiler, Bundeskriminalamt, Wiesbaden, see CBS 74

klaus.burger@mail.isis.de

G. Lodi et al., University of Ferrara, Italy, see CBS 69