International Symposium for Thin Layer Chromatography October 15-18th 2003, Lyon

TLC METHODS TO MONITOR MICROBIAL TRANSFORMATION PROCESSES

Balázs Erdélyi, <u>Antal Szabó</u>, László Birincsik, János Salát and Gábor Seres

IVAX Drug Research Institute, Budapest, Hungary e-mail: Balazs.Erdelyi@idri.hu Analytical monitoring of two typical biotransformations

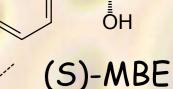
1. stereospecific reduction of some ketones

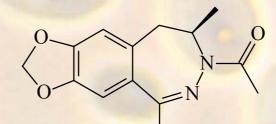
2. oxidation: regio- and stereospecific hydroxylation of compactin into pravastatin

The advantages of TLC

- 1. Simplicity: no laborous and time consuming sample preparation
- 2. **Productivity**: simultaneous processes with several samples, and references
- 3. Flexibility: evaluation variabilities with a single chromatogram

4. No decrease in resolution: using new, intact adsorbent for each run


Zygosaccharomyces rouxii use for the reduction of different ketones

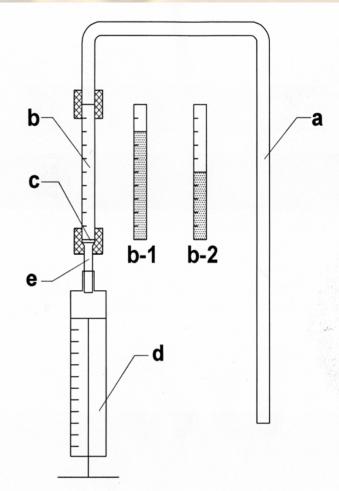

Talampanel: new drug with a wide action spectrum

Talampanel:

- AMPA receptor antagonist
- an expanded Phase II Clinical Trial for epilepsy
- Phase II Clinical Trial to treat
 Parkinson's Disease-associated dyskonesia
- Initation Phase II Clinical Trial for Brain Cancer
- further investigations on Talampanel related molecules

NH₂

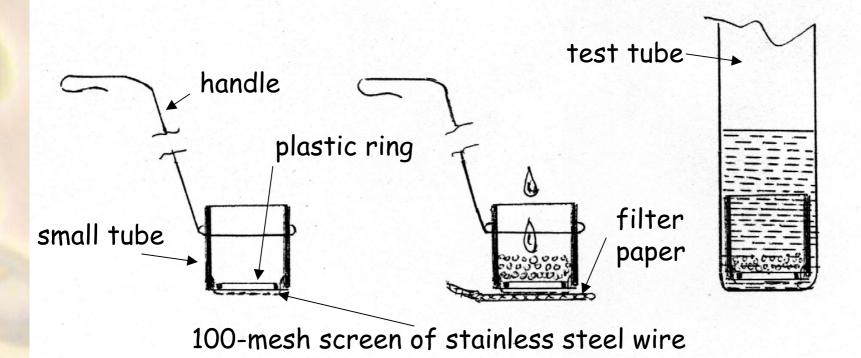
talampanel

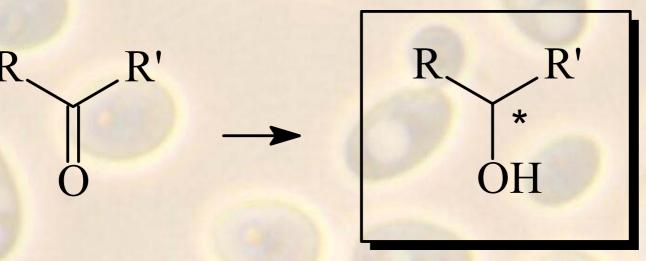

F. Andrási, Drug Future, 26 (8) (2001) 754-756.

Sampling device developed for resinbased processes

This device is suitable for: (i) sucking (ii) washing (iii) elution (iv) resin vol. estimation

Parts of the sampler:


- (a) glass suction pipe
- (b) graduated tube
- (c) stainless steel screen
- (d) PP syringe
- (e) small PP pipe


B. Erdélyi et al., J. Planar Chromatogr, 16 (2003) 246-248.

Simplified device for sampling from resin-based bioreduction media

Samples in large numbers required a further simplification of the sampler.

GENERAL REDUCTION SCHEME

Conditions of bioreductions:

- with Z. rouxii whole cells
- in-vivo co-factor regeneration
- with use of XAD-7 resin
- pH regulation with buffers
- flexible aeration and temperature conditions

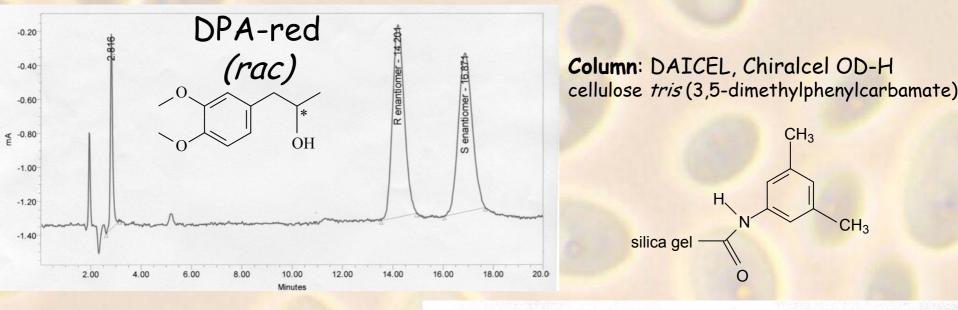
B. Erdelyi et al., 23rd ISSY, Budapest, Hungary, 26-29 August, 2003, P-3-12

Name of the ketones investigated	Signs of the ketones	Reduction schemes
3,4-methylenedioxy- phenylacetone	MDPA	
phenylacetone	PA	$\bigcup_{O} \longrightarrow \bigcup_{OH}$
4-methoxy- phenylacetone	MPA	
4-chloro- phenylacetone	CPA	$CI \longrightarrow OH$
3,4-dimethoxy- phenylacetone	DPA	
bensylacetone	BA	$ \bigcirc \bigcirc$
anisylacetone	AA	

TLC method to monitor the bioreductions

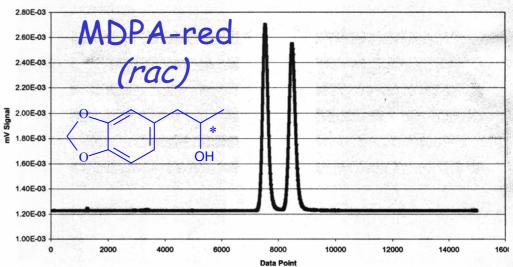
Spotting: CAMAG Linomat IV. Developing on Merck F₂₅₄ plate, Evaluation: CAMAG Scanner II. operated with Cats 3.0 software

Solvent mixture:

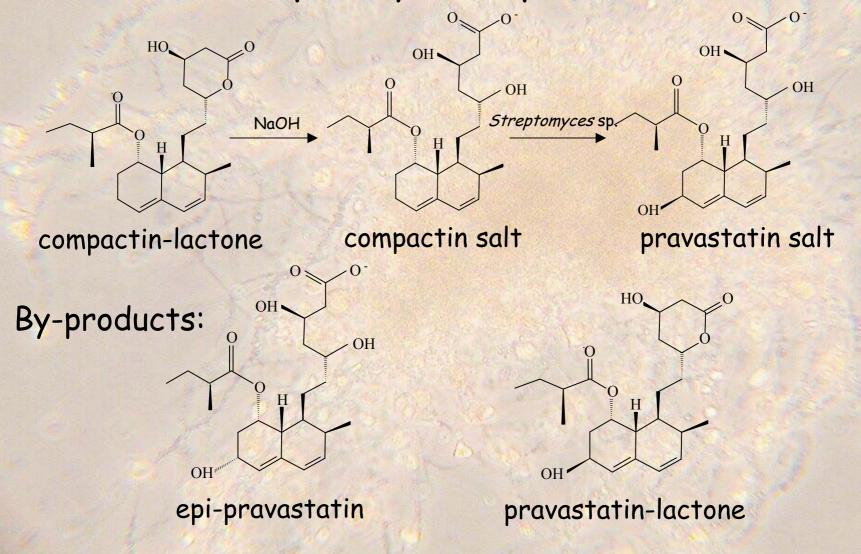

toluene tetrahydrofurane methylene chloride

92 v/v 4 v/v 4 v/v

The R_f values of the ketones investigated

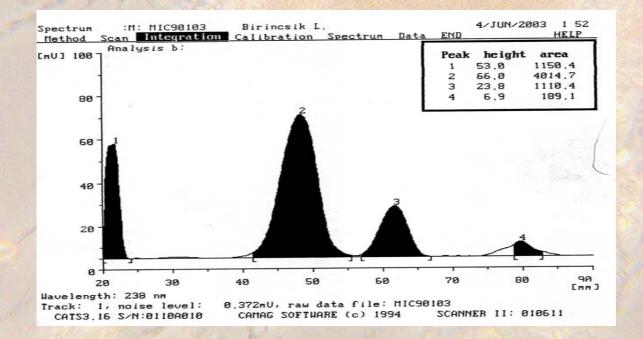

	Ketone	Alcohol
Signs	R _f	R _f
MDPA	0.72	0.48
PA	0.79	0.50
MPA	0.92	0.60
DPA	0.50	0.33
СРА	0.78	0.48
AA	0.73	0.41
BA	0.80	0.46

Stereospecific analysis


mobile phase: hexane i-propanole

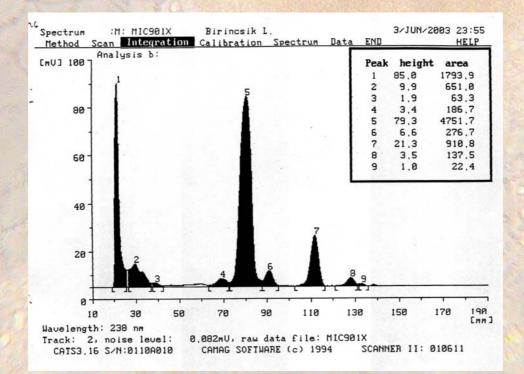
98 v/v 2 v/v

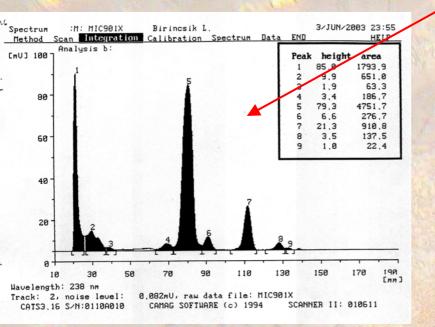
Streptomyces sp. use for the hydroxylation of compactin


Reaction scheme of pravastatin production and two by-products often formed in the hydroxylation process

Rapid method for quantitative monitoring of compactin hydroxylation

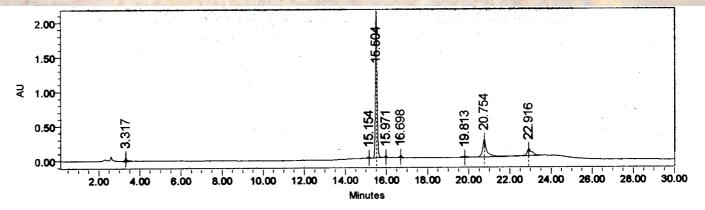
Solvent mixturetoluene30 v/vacetone20 v/vglacial acetic acid1 v/v


Merck Silicagel plate No. 5729 migration distance: 70 mm densitometry at 238 nm


HPTLC method for monitoring of the by-products and impurities

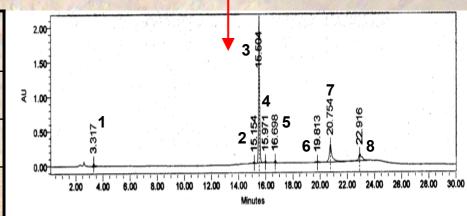
Solvent mixtureToluene30 v/vAcetone20 v/vglacial acetic acid1 v/v

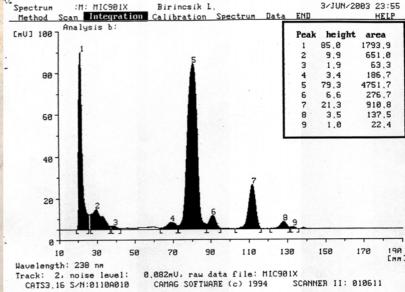
Merck Silicagel plate No. 5626 migration distance: 180 mm densitometry at 238 nm



Resolution of HPTLC and HPLC

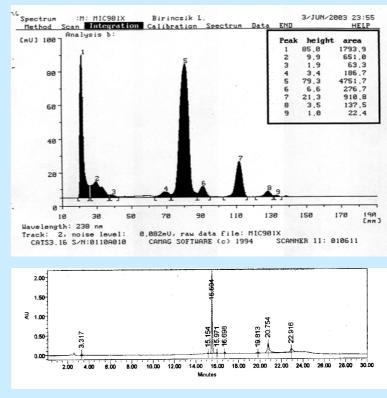
Peak No.	Compound
7	compactin
5	pravastatin
6	epi-pravastatin
1-3	impurities from ferm. broth
4,8,9	by-products

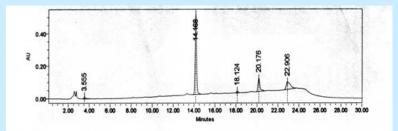

Nine peaks were separated from the fermentation broth by HPTLC technique.


Resolution of HPTLC and HPLC

Peak No.	Compound	
7	compactin	
3	pravastatin	
4	epi-pravastatin	
1,8	impurities from ferm. broth	
2,5,6	by-products	

Eight peaks were separated by HPLC technique applying new column.





"polar group": TLC: high intensities HPLC: low intensities

Summary: (HP)TLC or HPLC in a microbial development?

 TLC methods are suggested for monitoring biotransformation processes

 HPLC (or GC) for the chiral analysis from the purified products