

VRIJE UNIVERSITEIT BRUSSEL Department of Chemical Engineering

Shear Driven Chromatography as a Potential Alternative to HPTLC

Vervoort N., Clicq D., Baron G. and Desmet. G

- **1. Shear-Driven Flows**
- **2. Tracer Flow Experiments**
- **3. Separation Experiments**
- 4. Conclusions

VUB Effect of Pressure Drop Limitation

Getting Round Pressure Drop Limitation

Flow Driving Force at Channel Inlet

Flow Driving Force along Mantle Surface

Comparison with OT-LC

Pressure-Driven:

reduction of d restricted by △P-limitation

Shear-Driven:

u and d can be selected independently

$$u_{avg} = \frac{1}{2} u_{moving wall}$$

Shear-driven Flow Module

Longitudinal view:

Cross-sectional view:

V UB

Tracer flow experiment

L = 15 mm w = 4 mm d = 400 nm u_{mean} = 3 mm/s

d = 400 nanometer, u_{wall} = 6 mm/s

 $u_{avg} = \frac{1}{2} u_{moving wall}$

Still Image Analysis

d = 100 nanometer, u_{mean} = 1.4 cm/s

t = 0

zoom = 800%

t = 0.92s

Experimental Run

d = 100 nm, u_{mean} = 1.4 cm/s

∆**P = 3400 bar** !!

VUB Peak Broadening-van Deemter Plot

d = 100 nanometer, $D_m = 6.10^{-10} \text{ m}^2/\text{s}$

B Time Gain with respect to HPLC

B Time Gain with respect to HPLC

✓ UB Experimental : Channel fabrication

VUB Experimental: Channel Assembly

Unsealed channel parts = no problem

Experimental set-up I

Injection Method

Goal: injection of 100 μ m bands within 0.5 s

Method: micropositioner and automatic displacement system (accuracy of 0.5 micron = >99% accuracy)

Injection Example

Channel depth = 200nm

Stationary Phase Layer-la

Preparation of layer: 4 μ m RP-HPLC beads contained within a poly-acrylic polymer matrix

Stationary Phase Layer-Ib

Monolayer of commercial 4 μm HPLC-beads immobilised with Polyethoxysilane layer

Separations in 8 µm channel

Mobile phase = 60%/40% watermethanol

u = 1.25 mm/s

Experiment vs. Theory

Experimental Setup II

Stationary Phase

- Electrochemical etching of Si wafer
- Oxidizing Si \rightarrow SiO₂
- Surface modification with C8/C18

\Rightarrow 100-200 nm thin Porous Silica layer

UB Separations in 300 nm channel

U B Separations in 200 nm channel

Separation of four Coumarin dyes on monolayer C8

- u = 2 mm/s
- Mobile Phase = 45/55 % MeOH/H₂O
- t = 3 seconds

Separations in 200 nm channel

Baseline resolution of 4 compounds in 3 seconds $H \approx 0.5 \ \mu m \longrightarrow 2,000,000 \ plates/m$

van Deemter-plot

Take advantage of rectangular channel format to benefit maximally from Beer-Lamberts' law: Log $I_0/I \sim C_{max}$.

UB Use of Thick Stationary Phase

e.g. use of HPTLC plate only few microns thick which can be processed in a conventional way after separation.

- Continuous, chromatography enabling flows in channels as thin as 100 nanometer are possible
- Perfect predictability of flow rate
- Flow system without ΔP or ΔE -limitation
- Large potential gain in analysis time or resolution
- Offers larger separation window than TLC (all compounds can be eluted at the end of the column)

The End