Quantitative TLC with CCD detection

Michael Lancaster University of York

Why CCD detection
Chromatography
Imaging
Signal referencing
Image processing
Results

Why CCD Detection?

Two dimensional array detector

Evaluates whole plate in one exposure

Chromatography

- Normal phase glass backed silica gel 60
 F₂₅₄ plates
- Sudan dyes dissolved in hexane
- Samples applied by glass capillary
- Sample zones focused with acetonitrile
- Horizontal development with dichloromethane for 5-6 cm

Imaging

- Astromed TE4/A CCD camera used
- Camera lens 50 mm focal length
- Filter behind lens
- Laboratory lights used in reflectance
- 11W light box used in transmission

Signal Referencing

- The CCD output is a series of voltages corresponding to a greyscale for each pixel
- Two images taken one after spotting and one after chromatography and drying
- The two sets of data are ratioed pixel by pixel
- Logarithm taken of each ratio

Signal Referencing

No referencing

With referencing

Signal Referencing

Image Processing

Beer Lambert law

 $\log\left(I_{o}/I\right) = A = \varepsilon bc$

 Absorbance peak area proportional to amount in spot measured

 Linearity limited – model meant for non scattering medium

Image Processing Scion image beta 4.02 software used to integrate in one direction

Image Processing

 Data smoothing carried out on output from Scion image using peak fitting software

 Data integrated for a second time and peak areas quantified

Reflectance - Linearity

Reflectance – Precision, Range and LOD

 Five 10 ng spots on the same plate gave a RSD of <2%

Linear range from 1 – 10 ng

LOD – 0.5 ng could be seen

Transmission - Linearity

Transmission – Precision, Range and LOD

Five 5 ng spots gave a RSD of 1.7%

Linear range from 0.5 – 10 ng

LOD - 0.2 ng can be seen

Transmission - S/N

Summary

Fast method for quantitative TLC
Linear over one order of magnitude
Good Reproducibility
Good LOD

Future Work

Extend in to UV

Real Time

Forced Flow

Acknowledgment

EPSRC GlaxoSmithKline David M. Goodall ^a, Edmund T. Bergström ^a, Peter Myers ^a, Sean McCrossen ^b

a) Department of Chemistry, University of York, UKb) GlaxoSmithKline, Old Powder Mills, Tonbridge, UK.