Planar chromatography and digital autoradiography analysis of radiolabelled metabolites from microdialysis fractions

M. Haaparanta-Solin¹, T. Grönroos¹, P. Marjamäki¹, O. Eskola¹, J. Bergman¹ and O. Solin^{1,2}

¹Turku PET Centre, Turku, Finland ²Radiochemistry Laboratory, University of Helsinki Finland

10/25/2003

Background

Sampling and analysis of radiolabelled metabolites in blood *in vivo* from small animals is needed:

•when developing new radiolabelled tracers

•for metabolite correction for input function with animalPET-camera (dynamic imaging)

PET = Positron Emission Tomography

¹⁸**F** ; $T_{\frac{1}{2}} = 109.8 \text{ min}, \ \beta^{+}_{\text{max}} = 650 \text{ keV}$

(1R,2S)-4-[¹⁸F]fluoro-metaraminol

Specific radioactivity ~ 10 GBq/µmol

•1 Bq corresponds to ~ 0.1 fmol

Background cont.

By using microdialysis it is possible:

•to collect samples from blood with good time resolution

•to analyse samples without sample handling i.e samples are ready for chromatographic analysis

Analysis of microdialysis fractions is difficult because of:

•low volume

- •high specific radioactivity (i.e. low mass)
- •low amounts of radioactivity

Aim of the Study

Combination of

Microdialysis (MD)
Planar chromatography
Digital autoradiography with imaging plate

as a method for measuring

blood radioactivity concentration radiolabelled metabolite formation

in vivo as a function of time in small animals

Methods

Microdialysis (MD)

The microdialysis probe operates as an artificial blood vessel
Continuous blood sampling with high temporal resolution and without any sample handling

Planar chromatography

Combines instrumental and high performance TLC (HPTLC)
All sample components are observed in the same chromatogram

Digital Autoradiography (DAR) with imaging plate

 Sensitive, high resolution
 Wide dynamic range of linear response for beta-particles
 Turku PET Centre

10/25/2003

Principle of microdialysis

on-line sampling in extracellular fluid *in vivo*semipermeable membrane (cutoff 30 kD)

probe perfused with physiological bufferprotein free sample

Microdialysis probe in vena jugularis

Microdialysis

>tracer injected in tail vein

MD pump

Rat

Fraction collector

Radioactivity determination

Time-activity curves of microdialysates

Planar chromatography

Sample application

TLC development

Imaging plate for DAR

Imaging plate

Figure 4 IP's typical cross-sectional diagram and a SEM photograph

Source: Fuji Home page

10/25/2003

Digital autoradiography

PSL autoradiography

Image of radioactivity distribution

on TLC plate

Turku PET Centre

Unchanged [¹⁸F]FMR in MD jugularis fractions

Comparision of radiolabelled metabolite analysis by MD and blood sampling

Linearity and sensitivity of imaging plate with ¹⁸F

Summary

Planar chromatography with DAR as an analysing method for radiolabelled metabolites from MD fractions:

<u>Pros</u>

Sensitive, high resolution Wide dynamic range of linear response for beta-particles All sample components are observed in the same chromatogram

<u>Cons</u>

Best suitable for β -emitting nuclides (both β - and β +) Special equipments are required (TLC applicator, phosphoimager) Turku PET Centre

10/25/2003