VARIABLES INFLUENCING SEPARATION EFFICIENCY IN PRESSURIZED PLANAR ELECTROCHROMATOGRAPHY

T. H. Dzido, P. W. Płocharz, P. Ślązak

Department of Physical Chemistry, Chair of Chemistry, Medical University, Lublin, Poland

International Symposium for TLC
Berlin 2006
Introduction

Variables influencing separation

- mobile phase - stationary phase equilibration,
- pressure applied to the chromatographic plate,
- temperature,
- polarization voltage
- buffer concentration and pH,
- modifier concentration
- mode of sample application

Examples of separation

Conclusions
The idea of using electroosmosis as a mechanism for development of a planar medium can be traced back to:

Electroosmotic flow arises from the formation of an electrical double layer at the solid – liquid interface.

\[\equiv \text{SiOH} \leftrightarrow \equiv \text{SiO}^- + \text{H}^+ \]
Mobile phase velocity for pressure driven system:

\[u_p = \frac{d_p^2 \Delta P}{L \theta \eta} \]

- \(u_p \) - mobile phase velocity
- \(\theta \) - flow resistance parameter
- \(\eta \) - mobile phase viscosity
- \(d_p \) - particle size
- \(L \) - column length

Mobile phase velocity for electroosmotically driven system:

\[u_{eo} = \frac{\varepsilon_r \varepsilon_o E \zeta}{\eta} \]

- \(u_{eo} \) - electroosmotic flow
- \(\varepsilon_o \) - permittivity of vacuum
- \(\varepsilon_r \) - dielectric constant
- \(\zeta \) - zeta potential
- \(E \) - electric field
Flow profiles

electroosmotical flow

pneumatical flow

M. Pukl, M. Prosek, R.E. Kaiser, Chromatographia 38 (1994) 83

C. F. Poole, I. D. Wilson, J. Planar Chromatogr. 10 (1997) 332
Apparatus for high-speed thin-layer chromatography

25 kV
Glass tank
Start

Schematic diagram of experimental horizontal chamber for high voltage planar electrochromatography

M. Pukl, M. Prosek, R.E. Kaiser, Chromatographia 38 (1994) 83
Planar chromatography in horizontal chamber

1) cover plate, 2) silicone seal, 3) chromatographic carrier plate, 4) adsorbent layer, 5) paper wick, 6) mobile phase, 7) electrode

Apparatus for performing planar electrochromatography

Horizontal DS chamber adapted for planar electrochromatography (PEC)

Apparatus for performing PPEC.

Open ball joint and corresponding socket, and die blocks with aluminum nitride sheets. The picture shows the thermocouple on the right and the safety lead and lead to the anode on the upper left,

Picture of the PPEC instrument. The chromatographic base lies in the throat of the press.

The chamber for planar electrochromatography: (a) with opened lid (2 x 10 cm chromatographic plate with separated sample mixture is placed inside the chamber) and (b) with closed lid.

Conceptual view of the device for planar electrochromatography in a completely closed system.

Mobile phase - stationary phase equilibration,
Different time of stationary phase saturation with mobile phase

3 sec 1 min 5 min 10 min 30 min

Migration distance vs. soak time on HPTLC plates conditioned at 160°C.
Plate 1 equilibration effects with 1000VDC applied. Each data series corresponds to an individual reader electrode. The data series are in sequential order, where the top series is 1.1 cm from the positive reservoir all the way to the bottom series representing 8.9 cm from the positive reservoir.
(A) Graph of voltage vs. time, illustrating the new TLC plate sealing method does not change the flow profile or equilibration time. (B) Voltage profile after EOF equilibration, plate removal (simulate spotting) and replacement into apparatus.

Pressure applied to the chromatographic plate
A 1-min separation on a LiChrospher C18 plate at 9 kV and a pressure of (a) 11.8, (b) 19.7, or (c) 118 atm; 55% ACN in acetate buffer pH 4.7.

Migration distance versus pressure drop; (a) regular plates, (b) high – performance plates.

Temperature influence
Migration distance versus oven temperature for LiChrospher plates conditioned for 20 min. Separation 3 min, 59 atm, 6 kV.

\[\eta \propto \exp(\text{const} / RT) \]

\[\zeta = \frac{\sigma \delta}{\varepsilon_0 \varepsilon_r} \]

\[\delta = \sqrt{\frac{\varepsilon_0 \varepsilon_r RT}{2cF^2}} \]

\[u_{eo} = \frac{\varepsilon_r \varepsilon_o E \zeta}{\eta} \]
Migration distance versus separation temperature on regular plates conditioned at 120 °C for 20 min.

Number of theoretical plates for o-nitroaniline versus separation temperature on high-performance plates conditioned at 160 °C for 20 min.

Polarization voltage
Plots of the mobile phase volume passed through the chromatographic plate vs time of PPEC experiment for various voltages: 0.75, 1, 1.5, 2.5, 3.5, and 4.5 kV. TLC RP18 F254s plate (Merck, Darmstadt), 80% acetonitrile in buffer (3.74 mM citric acid, 12.52 mM disodium hydrogen phosphate, pH 6).

Plot of mobile phase flow rate vs. polarization voltage.

Buffer concentration and pH
Volume of the mobile phase passed through the RP18 F254s TLC plate vs time of experiment for various buffer concentrations: (a) no buffer; (b) 1.34 mM citric acid, 2.32 mM disodium hydrogen phosphate; (c) 5.37 mM citric acid, 9.26 mM disodium hydrogen phosphate; (d) 10.74 mM citric acid, 18.52 mM disodium hydrogen phosphate. pH of all buffer solutions is 4.6, 80% acetonitrile.

The influence of pH value of buffer solution in the mobile phase on flow rate of the mobile phase. TLC RP18 F254s plate Merck, Darmstadt). 80% acetonitrile in buffer; 2.5 kV.

Modifier concentration
Chromatogram from MGR02.3D at 2.5 kV, (a) 80%, (b) 90 % ACN, RP-18 TLC plate (E. Merck), separation time 5 min; (1) Sudan IV, (2) 4-chlorophenylazo-2-naphthol, (3) 1-(3-pyridylazo)-2-naphthol, (4) 4-(diethylamino)azobenzene, (5) 1-(4-hydroxyphenylazo)2-naphthol, (7) 4-nitroaniline; scanned with DAD Scanner (J&M).
Mode of sample application
Influence of mobile phase flow rate on plate height for various modes of sample application; 80% acetonitrile in buffer, TLC RP18 F254s plate (Merck, Darmstadt).
Influence of mobile phase flow rate on plate height for various modes of sample application; 80% acetonitrile in buffer, HPTLC RP18 F254s plate (Merck, Darmstadt).
Separation of a nine-component mixture in 2 min. PPEC was performed at 9 kV and 63 atm using of 55% aqueous acetonitrile containing 5 mM acetate buffer at a pH of 4.7 on a high-performance layer.

Electrochromatogram of pesticide mixture, 60% acetonitrile in water, HPTLC RP18W F254s Plate (Merck, Darmstadt)
7.5 kV, 80% ACN, RP-18 TLC plate (E. Merck), separation time 45 sec; (1) Sudan IV, (2) 4-chlorophenylazo-2-naphthol, (3) 1-(3-pyridylazo)-2-naphthol, (4) 4-(diethylamino)azobenzene, (5) 1-(4-hydroxyphenylazo)-2-naphthol, (7) 4-nitroaniline, scanned with DAD Scanner (J&M).
Separation of nine samples by PPEC in 1 min on a LiChrospher C18 plate at 59 atm and 7 kV. The solutes and mobile phase are the same as those in Fig. 17

The speaker’s attendance at this conference was sponsored by the Alexander von Humboldt Foundation.